The return time theorem fails on infinite measure-preserving systems

Michael T. Lacey

Annales de l'I.H.P. Probabilités et statistiques (1997)

  • Volume: 33, Issue: 4, page 491-495
  • ISSN: 0246-0203

How to cite

top

Lacey, Michael T.. "The return time theorem fails on infinite measure-preserving systems." Annales de l'I.H.P. Probabilités et statistiques 33.4 (1997): 491-495. <http://eudml.org/doc/77579>.

@article{Lacey1997,
author = {Lacey, Michael T.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {ergodic measure-preserving system; sigma-finite measure-preserving system; aperiodic measure-preserving system},
language = {eng},
number = {4},
pages = {491-495},
publisher = {Gauthier-Villars},
title = {The return time theorem fails on infinite measure-preserving systems},
url = {http://eudml.org/doc/77579},
volume = {33},
year = {1997},
}

TY - JOUR
AU - Lacey, Michael T.
TI - The return time theorem fails on infinite measure-preserving systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 4
SP - 491
EP - 495
LA - eng
KW - ergodic measure-preserving system; sigma-finite measure-preserving system; aperiodic measure-preserving system
UR - http://eudml.org/doc/77579
ER -

References

top
  1. [AD] J. Aaronson and M. Denker, On the FLIL for certain ψ-mixing processes and infinite measure-preserving transformations, (English. French summary), C. R. Acad. Sci. Paris, Série I, Math., Vol. 313, 1991, pp. 471-475. Zbl0734.60033MR1127942
  2. [BL] A. Bellow and V. Losert, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., Vol. 288, 1985, pp. 307-345. Zbl0619.47004MR773063
  3. [B] J. Bourgain, Almost sure convergence and bounded entropy, Israel J. Math., Vol. 63, 1988, pp. 79-97. Zbl0677.60042MR959049
  4. [BFKO] J. Bourgain, H. Furstenberg, Y. Katznelson and D. Ornstein, Return times of dynamical systems, Appendix to : Pointwise ergodic theorems for arithmetic sets, by J. Bourgain, Pub. Math. I.H.E.S., Vol. 69, 1989, pp. 5-45. Zbl0705.28008MR1019960
  5. [D] R.M. Dudley, Real Analysis and Probability, Wadsworth & Brooks/Cole, Pacific Grove, Gal., 1989. Zbl0686.60001
  6. [LPRW] M. Lacey, K. Petersen, D. Rudolph and M. Wierdl, Random ergodic theorems with universally representative sequences, Ann. Instit. H. Poincaré, Vol. 30, 1994, pp. 353-395. Zbl0813.28004MR1288356
  7. [W] M. Wichura, Functional law of the iterated logarithm for the partial sums of i.i.d. random variables in the domain of attraction of a completely asymmetric stable law, Ann. Probab., Vol. 2, 1974, pp. 1108-1138. Zbl0325.60029MR358950
  8. [WW] N. Wiener and A. Wintner, Harmonic analysis and ergodic theory, Amer. J. Math., Vol. 63, 1941, pp. 415-426. Zbl0025.06504MR4098

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.