Comparisons between tail probabilities of sums of independent symmetric random variables

Alexander R. Pruss

Annales de l'I.H.P. Probabilités et statistiques (1997)

  • Volume: 33, Issue: 5, page 651-671
  • ISSN: 0246-0203

How to cite

top

Pruss, Alexander R.. "Comparisons between tail probabilities of sums of independent symmetric random variables." Annales de l'I.H.P. Probabilités et statistiques 33.5 (1997): 651-671. <http://eudml.org/doc/77585>.

@article{Pruss1997,
author = {Pruss, Alexander R.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {tail probabilities of sums of independent symmetric random variables; weak mean domination; stochastic domination; regular covering; rates of convergence in the law of large numbers; Hsu-Robbins-Erdős laws of large numbers},
language = {eng},
number = {5},
pages = {651-671},
publisher = {Gauthier-Villars},
title = {Comparisons between tail probabilities of sums of independent symmetric random variables},
url = {http://eudml.org/doc/77585},
volume = {33},
year = {1997},
}

TY - JOUR
AU - Pruss, Alexander R.
TI - Comparisons between tail probabilities of sums of independent symmetric random variables
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 5
SP - 651
EP - 671
LA - eng
KW - tail probabilities of sums of independent symmetric random variables; weak mean domination; stochastic domination; regular covering; rates of convergence in the law of large numbers; Hsu-Robbins-Erdős laws of large numbers
UR - http://eudml.org/doc/77585
ER -

References

top
  1. [1] A. Bikelis [= BIKYALIS], On estimates of the remainder term in the central limit theorem, Litovskiĭ Mat. Sb., Vol. 6, 1966, p. 323-346 (Russian). Zbl0149.14002MR210173
  2. [2] D.L. Burkholder, Explorations in martingale theory and its applications, Ecole d'Eté de Probabilités de Saint-Flour XIX - 1989 (D. L. Burkholder, E. Padoux and A. Sznitman, eds.), Lecture Notes in Mathematics, Vol. 1464, Springer-Verlag, New York, 1991, p. 1-66. Zbl0771.60033MR1108183
  3. [3] R. Chen, A remark on the tail probability of a distribution, J. Multivariate Analysis, Vol. 8, 1978, p. 328-333. Zbl0376.60033MR482945
  4. [4] P. Erdös, On a theorem of Hsu and Robbins, Ann. Math. Statist., Vol. 20, 1949, p. 286-291. Zbl0033.29001MR30714
  5. [5] P. Erdös, Remark on my paper "On a theorem of Hsu and Robbins", Ann. Math. Statist., Vol. 21, 1950, p. 138. Zbl0035.21403MR32970
  6. [6] B.V. Gnedenko and A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, revised, Addison-Wesley, Reading, Massachusetts, 1968. Zbl0056.36001MR233400
  7. [7] A. Gut, Complete convergence, Asymptotic Statistics: Proceedings of the Fifth Symposium held at Charles University, Prague, September 4-9, 1993 (P. Mandl and M. Hušková, eds.), Contrib. Statist., Physica-Verlag, Heidelberg. MR1311943
  8. [8] A. Gut, Complete convergence for arrays, Periodica Math. Hungarica, Vol. 25, 1992, p. 51-75. Zbl0760.60029MR1200841
  9. [9] C.C. Heyde, A supplement to the strong law of large numbers, J. Appl. Prob., Vol. 12, 1975, p. 173-175. Zbl0305.60008MR368116
  10. [10] P.L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U.S.A., Vol. 33, 1947, p. 25-31. Zbl0030.20101MR19852
  11. [11] C.S. Kahane, Evaluating Lebesgue integrals as limits of Riemann sums, Math. Japonica, Vol. 38, 1993, p. 1073-1076. Zbl0795.28004MR1250330
  12. [12] O.I. Klesov, Convergence of series of probabilities of large deviations of sums of independent identically distributed random variables, Ukraïnskiĭ Mat. Zhurn., Vol. 45, 1993, p. 770-784. Zbl0805.60021MR1299963
  13. [13] S. Kwapień and W.A. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple, Birkhauser, Boston, 1992. Zbl0751.60035MR1167198
  14. [14] D. Li, M.B. Rao, T. Jiang and X. Wang, Convergence and almost sure convergence of weighted sums of random variables, J. Theoret. Probab., Vol. 8, 1995, p. 49-76. Zbl0814.60026MR1308670
  15. [15] M. Loève, Probability Theory, 3rd edition, Van Nostrand, New York, 1963. Zbl0108.14202MR203748
  16. [16] S.J. Montgomery-Smith, Comparison of sums of identically distributed random vectors, Probab. Math. Statist., Vol. 14, 1993, p. 281-285. Zbl0827.60005MR1321767
  17. [17] A.R. Pruss, On Spătaru's extension of the Hsu-Robbins-Erdös law of large numbers, J. Math. Anal. Appl., Vol. 199, 1996, p. 558-578. Zbl0853.60042MR1383241
  18. [18] A.R. Pruss, Randomly sampled Riemann sums and complete convergence in the law of large numbers for a case without identical distribution, Proc. Amer. Math. Soc., Vol. 124, 1996, p. 919-929. Zbl0843.60031MR1301524
  19. [19] A.R. Pruss, A two-sided estimate in the Hsu-Robbins-Erdös law of large numbers, Stochastic Processes Appl. (to appear). Zbl0911.60021MR1475661
  20. [20] A.R. Pruss, Remarks on summability of series formed from deviation probabilities of sums of independent identically distributed random variables, Ukraïnskiĭ Mat. Zhurn., Vol. 48, 1996, p. 569-572. Zbl0946.60021MR1417021
  21. [21] A.R. Pruss, A bounded N-tuplewise independent and identically distributed counterexample to the CLT, Preprint, 1997. 
  22. [22] D. Szynal, On complete convergence for some classes of dependent random variables, Annales Univ. Mariae Curie-Sklodowska, (Sectio A), Vol. 47, 1993, p. 145-150. Zbl0876.60016MR1344984
  23. [23] H. Thorisson, Coupling methods in probability theory, Scand. J. Statist., Vol. 22, 1995, p. 159-182. Zbl0839.60070MR1339749
  24. [24] W.A. Woyczyński, Tail probabilities of sums of random vectors in Banach spaces, and related norms, Measure Theory Oberwolfach 1979 (D. Kolzow, ed.), Lecture Notes in Mathematics, Vol. 794, Springer-Verlag, New York, 1980, p. 455-469. Zbl0436.60007MR577990
  25. [25] W.A. Woyczyński, On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence, Probab. Math. Statist., Vol. 1, 1980, p. 117-131. Zbl0502.60006MR626306

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.