Comparisons between tail probabilities of sums of independent symmetric random variables
Annales de l'I.H.P. Probabilités et statistiques (1997)
- Volume: 33, Issue: 5, page 651-671
- ISSN: 0246-0203
Access Full Article
topHow to cite
topPruss, Alexander R.. "Comparisons between tail probabilities of sums of independent symmetric random variables." Annales de l'I.H.P. Probabilités et statistiques 33.5 (1997): 651-671. <http://eudml.org/doc/77585>.
@article{Pruss1997,
author = {Pruss, Alexander R.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {tail probabilities of sums of independent symmetric random variables; weak mean domination; stochastic domination; regular covering; rates of convergence in the law of large numbers; Hsu-Robbins-Erdős laws of large numbers},
language = {eng},
number = {5},
pages = {651-671},
publisher = {Gauthier-Villars},
title = {Comparisons between tail probabilities of sums of independent symmetric random variables},
url = {http://eudml.org/doc/77585},
volume = {33},
year = {1997},
}
TY - JOUR
AU - Pruss, Alexander R.
TI - Comparisons between tail probabilities of sums of independent symmetric random variables
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 5
SP - 651
EP - 671
LA - eng
KW - tail probabilities of sums of independent symmetric random variables; weak mean domination; stochastic domination; regular covering; rates of convergence in the law of large numbers; Hsu-Robbins-Erdős laws of large numbers
UR - http://eudml.org/doc/77585
ER -
References
top- [1] A. Bikelis [= BIKYALIS], On estimates of the remainder term in the central limit theorem, Litovskiĭ Mat. Sb., Vol. 6, 1966, p. 323-346 (Russian). Zbl0149.14002MR210173
- [2] D.L. Burkholder, Explorations in martingale theory and its applications, Ecole d'Eté de Probabilités de Saint-Flour XIX - 1989 (D. L. Burkholder, E. Padoux and A. Sznitman, eds.), Lecture Notes in Mathematics, Vol. 1464, Springer-Verlag, New York, 1991, p. 1-66. Zbl0771.60033MR1108183
- [3] R. Chen, A remark on the tail probability of a distribution, J. Multivariate Analysis, Vol. 8, 1978, p. 328-333. Zbl0376.60033MR482945
- [4] P. Erdös, On a theorem of Hsu and Robbins, Ann. Math. Statist., Vol. 20, 1949, p. 286-291. Zbl0033.29001MR30714
- [5] P. Erdös, Remark on my paper "On a theorem of Hsu and Robbins", Ann. Math. Statist., Vol. 21, 1950, p. 138. Zbl0035.21403MR32970
- [6] B.V. Gnedenko and A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, revised, Addison-Wesley, Reading, Massachusetts, 1968. Zbl0056.36001MR233400
- [7] A. Gut, Complete convergence, Asymptotic Statistics: Proceedings of the Fifth Symposium held at Charles University, Prague, September 4-9, 1993 (P. Mandl and M. Hušková, eds.), Contrib. Statist., Physica-Verlag, Heidelberg. MR1311943
- [8] A. Gut, Complete convergence for arrays, Periodica Math. Hungarica, Vol. 25, 1992, p. 51-75. Zbl0760.60029MR1200841
- [9] C.C. Heyde, A supplement to the strong law of large numbers, J. Appl. Prob., Vol. 12, 1975, p. 173-175. Zbl0305.60008MR368116
- [10] P.L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U.S.A., Vol. 33, 1947, p. 25-31. Zbl0030.20101MR19852
- [11] C.S. Kahane, Evaluating Lebesgue integrals as limits of Riemann sums, Math. Japonica, Vol. 38, 1993, p. 1073-1076. Zbl0795.28004MR1250330
- [12] O.I. Klesov, Convergence of series of probabilities of large deviations of sums of independent identically distributed random variables, Ukraïnskiĭ Mat. Zhurn., Vol. 45, 1993, p. 770-784. Zbl0805.60021MR1299963
- [13] S. Kwapień and W.A. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple, Birkhauser, Boston, 1992. Zbl0751.60035MR1167198
- [14] D. Li, M.B. Rao, T. Jiang and X. Wang, Convergence and almost sure convergence of weighted sums of random variables, J. Theoret. Probab., Vol. 8, 1995, p. 49-76. Zbl0814.60026MR1308670
- [15] M. Loève, Probability Theory, 3rd edition, Van Nostrand, New York, 1963. Zbl0108.14202MR203748
- [16] S.J. Montgomery-Smith, Comparison of sums of identically distributed random vectors, Probab. Math. Statist., Vol. 14, 1993, p. 281-285. Zbl0827.60005MR1321767
- [17] A.R. Pruss, On Spătaru's extension of the Hsu-Robbins-Erdös law of large numbers, J. Math. Anal. Appl., Vol. 199, 1996, p. 558-578. Zbl0853.60042MR1383241
- [18] A.R. Pruss, Randomly sampled Riemann sums and complete convergence in the law of large numbers for a case without identical distribution, Proc. Amer. Math. Soc., Vol. 124, 1996, p. 919-929. Zbl0843.60031MR1301524
- [19] A.R. Pruss, A two-sided estimate in the Hsu-Robbins-Erdös law of large numbers, Stochastic Processes Appl. (to appear). Zbl0911.60021MR1475661
- [20] A.R. Pruss, Remarks on summability of series formed from deviation probabilities of sums of independent identically distributed random variables, Ukraïnskiĭ Mat. Zhurn., Vol. 48, 1996, p. 569-572. Zbl0946.60021MR1417021
- [21] A.R. Pruss, A bounded N-tuplewise independent and identically distributed counterexample to the CLT, Preprint, 1997.
- [22] D. Szynal, On complete convergence for some classes of dependent random variables, Annales Univ. Mariae Curie-Sklodowska, (Sectio A), Vol. 47, 1993, p. 145-150. Zbl0876.60016MR1344984
- [23] H. Thorisson, Coupling methods in probability theory, Scand. J. Statist., Vol. 22, 1995, p. 159-182. Zbl0839.60070MR1339749
- [24] W.A. Woyczyński, Tail probabilities of sums of random vectors in Banach spaces, and related norms, Measure Theory Oberwolfach 1979 (D. Kolzow, ed.), Lecture Notes in Mathematics, Vol. 794, Springer-Verlag, New York, 1980, p. 455-469. Zbl0436.60007MR577990
- [25] W.A. Woyczyński, On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence, Probab. Math. Statist., Vol. 1, 1980, p. 117-131. Zbl0502.60006MR626306
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.