A weighted pointwise ergodic theorem
Annales de l'I.H.P. Probabilités et statistiques (1998)
- Volume: 34, Issue: 1, page 139-150
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] I. Assani, Strong laws for weighted sums of independently identically distributed random variables, Duke Mathematical Journal, Vol. 88, 1997, pp. 217-246. Zbl0883.60023MR1455518
- [2] J. Bourgain, H. Furstenberg, Y. Katznelson and D. Ornstein, Return times of dynamical systems Appendix to J. Bourgain, Pointwise Ergodic Theorems for Arithmetic Sets, I.H.E.S., Vol. 69, 1989, pp. 5-45. Zbl0705.28008MR1019960
- [3] A. Bellow, R. Jones and J. Rosenblatt, Convergence for moving averages, Ergod. Th. & Dynam. Sys., Vol. 10, 1990, pp. 43-62. Zbl0674.60035
- [4] A. Bellow and V. Losert, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., Vol. 288, 1985, pp. 307-345. Zbl0619.47004MR773063
- [5] R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta. Math., Vol. 91, 1954, pp. 245-301. Zbl0056.29001MR65679