Computing the expectation of the Azéma-Yor stopping times
Annales de l'I.H.P. Probabilités et statistiques (1998)
- Volume: 34, Issue: 2, page 265-276
- ISSN: 0246-0203
Access Full Article
topHow to cite
topPedersen, J. L., and Peškir, G.. "Computing the expectation of the Azéma-Yor stopping times." Annales de l'I.H.P. Probabilités et statistiques 34.2 (1998): 265-276. <http://eudml.org/doc/77603>.
@article{Pedersen1998,
author = {Pedersen, J. L., Peškir, G.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {diffusion; Itô-Tanaka’s formula; Wiener process; Bessel process},
language = {eng},
number = {2},
pages = {265-276},
publisher = {Gauthier-Villars},
title = {Computing the expectation of the Azéma-Yor stopping times},
url = {http://eudml.org/doc/77603},
volume = {34},
year = {1998},
}
TY - JOUR
AU - Pedersen, J. L.
AU - Peškir, G.
TI - Computing the expectation of the Azéma-Yor stopping times
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 2
SP - 265
EP - 276
LA - eng
KW - diffusion; Itô-Tanaka’s formula; Wiener process; Bessel process
UR - http://eudml.org/doc/77603
ER -
References
top- [1] J. Azéma and M. Yor, Une solution simple au problème de Skorokhod. Sém. Prob. XIII. Lecture Notes in Math.784, Springer-VerlagBerlinHeidelberg, 1979, pp. 90-115 and 625-633. Zbl0414.60055MR544782
- [2] L.E. Dubins L. A. Shepp and A.N. Shiryaev, Optimal stopping rules and maximal inequalities for Bessel processes. Theory Probab. Appl., Vol. 38, 1993, pp. 226-261. Zbl0807.60040MR1317981
- [3] S.E. Graversen and G. Peškir, Optimal stopping and maximal inequalities for linear diffusions. Research Report No. 335, Dept. Theoret. Stat. Aarhus (18 pp), 1995. To appear in J. Theoret. Probab. Zbl0905.60058MR1607439
- [4] S.E. Graversen and G. Peškir, On Doob's maximal inequality for Brownian motion. Research Report No. 337, Dept. Theoret. Stat. Aarhus (13 pp), 1995. Stochastic Process. Appl., Vol. 69, 1997, pp. 111-125. Zbl0913.60011MR1464177
- [5] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Springer-Verlag. Zbl0731.60002
- [6] L.C.G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales; Volume 2: Itô's Calculus. John Wiley & Sons, 1987. Zbl0627.60001
- [7] L.A. Shepp and A.N. Shiryaev, The Russian Option: Reduced Regret. Ann. Appl. Probab.3, 1993, pp. 631-640. Zbl0783.90011MR1233617
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.