Functional laws of the iterated logarithm for local times of recurrent random walks on
Endre Csáki; Pál Révész; Jay Rosen
Annales de l'I.H.P. Probabilités et statistiques (1998)
- Volume: 34, Issue: 4, page 545-563
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] J. Bertoin and M. Caballero, On the rate of growth of subordinators with slowly varying Laplace exponent, Sem. de Prob. XXIX, Lecture Notes Math, Vol. 1612, Springer-Verlag, Berlin, 1995, pp. 125-132. Zbl0835.60068MR1459454
- [2] L. Breiman, Probability, Society for Industrial andApplied Mathematics, Philadelphia, 1992. Zbl0753.60001MR1163370
- [3] E. Csáki, M. Csörgö, A. Földes and P. Révész, On the occupation time of an iterated process having no local time, StochasticProcess. Appl., Vol. 70, 1997, pp. 199-217. Zbl0911.60068MR1475663
- [4] P. Erdös and J. Taylor, Some problems concerning the structure of random walk paths, Acta Math. Acad. Sci. Hung., Vol. 11, 1960, pp. 137-162. Zbl0091.13303MR121870
- [5] J.-P. Kahane, Some random series of functions, Cambridge University Press, Cambridge, 1985. Zbl0571.60002MR833073
- [6] M. Klass, Toward a universal law of the iterated logarithm, Part I, Z. Wahrsch. verw. Gebiete, Vol. 36, 1976, pp. 165-178. Zbl0319.60019MR415742
- [7] M. Marcus and J. Rosen, Laws of the iterated logarithm for the local times of recurrent random walks on Z2 and of Levy processes and recurrent random walks in the domain of attraction of Cauchy random variables, Ann. Inst. H. Poincaré Prob. Stat., Vol. 30, 1994, pp. 467-499. Zbl0805.60069MR1288360
- [8] M. Marcus and J. Rosen, Laws of the iterated logarithm for the local times of symmetric Levy processes and recurrent random walks, Ann. Probab., Vol. 22, 1994, pp. 626-658. Zbl0815.60073MR1288125
- [9] P. Révész and E. Willekens, On the maximal distance between two renewal epochs, StochasticProcess. Appl., Vol. 27, 1988, pp. 21-41. Zbl0632.60083MR934527