Functional laws of the iterated logarithm for local times of recurrent random walks on Z 2

Endre Csáki; Pál Révész; Jay Rosen

Annales de l'I.H.P. Probabilités et statistiques (1998)

  • Volume: 34, Issue: 4, page 545-563
  • ISSN: 0246-0203

How to cite

top

Csáki, Endre, Révész, Pál, and Rosen, Jay. "Functional laws of the iterated logarithm for local times of recurrent random walks on $Z^2$." Annales de l'I.H.P. Probabilités et statistiques 34.4 (1998): 545-563. <http://eudml.org/doc/77612>.

@article{Csáki1998,
author = {Csáki, Endre, Révész, Pál, Rosen, Jay},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {LIL behaviour; symmetric random walk; scaling limits},
language = {eng},
number = {4},
pages = {545-563},
publisher = {Gauthier-Villars},
title = {Functional laws of the iterated logarithm for local times of recurrent random walks on $Z^2$},
url = {http://eudml.org/doc/77612},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Csáki, Endre
AU - Révész, Pál
AU - Rosen, Jay
TI - Functional laws of the iterated logarithm for local times of recurrent random walks on $Z^2$
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 4
SP - 545
EP - 563
LA - eng
KW - LIL behaviour; symmetric random walk; scaling limits
UR - http://eudml.org/doc/77612
ER -

References

top
  1. [1] J. Bertoin and M. Caballero, On the rate of growth of subordinators with slowly varying Laplace exponent, Sem. de Prob. XXIX, Lecture Notes Math, Vol. 1612, Springer-Verlag, Berlin, 1995, pp. 125-132. Zbl0835.60068MR1459454
  2. [2] L. Breiman, Probability, Society for Industrial andApplied Mathematics, Philadelphia, 1992. Zbl0753.60001MR1163370
  3. [3] E. Csáki, M. Csörgö, A. Földes and P. Révész, On the occupation time of an iterated process having no local time, StochasticProcess. Appl., Vol. 70, 1997, pp. 199-217. Zbl0911.60068MR1475663
  4. [4] P. Erdös and J. Taylor, Some problems concerning the structure of random walk paths, Acta Math. Acad. Sci. Hung., Vol. 11, 1960, pp. 137-162. Zbl0091.13303MR121870
  5. [5] J.-P. Kahane, Some random series of functions, Cambridge University Press, Cambridge, 1985. Zbl0571.60002MR833073
  6. [6] M. Klass, Toward a universal law of the iterated logarithm, Part I, Z. Wahrsch. verw. Gebiete, Vol. 36, 1976, pp. 165-178. Zbl0319.60019MR415742
  7. [7] M. Marcus and J. Rosen, Laws of the iterated logarithm for the local times of recurrent random walks on Z2 and of Levy processes and recurrent random walks in the domain of attraction of Cauchy random variables, Ann. Inst. H. Poincaré Prob. Stat., Vol. 30, 1994, pp. 467-499. Zbl0805.60069MR1288360
  8. [8] M. Marcus and J. Rosen, Laws of the iterated logarithm for the local times of symmetric Levy processes and recurrent random walks, Ann. Probab., Vol. 22, 1994, pp. 626-658. Zbl0815.60073MR1288125
  9. [9] P. Révész and E. Willekens, On the maximal distance between two renewal epochs, StochasticProcess. Appl., Vol. 27, 1988, pp. 21-41. Zbl0632.60083MR934527

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.