About the stationary states of vortex systems

Thierry Bodineau; Alice Guionnet

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 2, page 205-237
  • ISSN: 0246-0203

How to cite

top

Bodineau, Thierry, and Guionnet, Alice. "About the stationary states of vortex systems." Annales de l'I.H.P. Probabilités et statistiques 35.2 (1999): 205-237. <http://eudml.org/doc/77628>.

@article{Bodineau1999,
author = {Bodineau, Thierry, Guionnet, Alice},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {statistical mechanics of two-dimensional Euler equations; interacting particle systems; large deviations; central limit theorem},
language = {eng},
number = {2},
pages = {205-237},
publisher = {Gauthier-Villars},
title = {About the stationary states of vortex systems},
url = {http://eudml.org/doc/77628},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Bodineau, Thierry
AU - Guionnet, Alice
TI - About the stationary states of vortex systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 2
SP - 205
EP - 237
LA - eng
KW - statistical mechanics of two-dimensional Euler equations; interacting particle systems; large deviations; central limit theorem
UR - http://eudml.org/doc/77628
ER -

References

top
  1. [1] M.A. Arcones, E. Gine, Limit Theorems for U-processes, Ann. Probab., Vol. 21, 1993, pp. 1494-1542. Zbl0789.60031MR1235426
  2. [2] G. Ben Arous, M. Brunaud, Méthode de Laplace : Etude variationnelle des fluctuations de diffusions de type "champ moyen", Stochastics , Vol. 31-32, 1990, pp. 79-144 Zbl0705.60046MR1080535
  3. [3] E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations : A statistical mechanics description, Commun. Math. Phys., Vol. 143, 1991, pp. 501-525. Zbl0745.76001MR1145596
  4. [4] E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations : A statistical mechanics description. Part 2Commun. Math. Phys., Vol. 174, 1995, pp. 229-260. Zbl0840.76002MR1362165
  5. [5] A. Dembo, O. Zeitouni, Large deviations techniques and Applications. Jones and Bartlett, 1993. Zbl0793.60030MR1202429
  6. [6] J.-D. Deuschel, D.W. Stroock, Larges deviations, Academic Press, 1989. Zbl0705.60029MR997938
  7. [7] C. Deustch, M. Lavaud, Equilibrium properties of a two dimensional Coulomb gas, Phys. Rev. A, Vol. 9, 6, 1973, pp. 2598-2616. 
  8. [8] G.L. Eyink, H. Spohn, Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence, J. Stat. Phys., Vol. 70, Nov. 3/4, 1993, pp. 833-886. Zbl0945.82568MR1203717
  9. [9] J. Fröhlich, Classical and quantum statistical mechanics in one and two dimensions, two component Yukawa and Coulomb systems, Commun. Math. Phys., Vol. 47, 1976, pp. 233-268. Zbl1092.82505MR434278
  10. [10] J. Fröhlich, D. Ruelle, Statistical mechanics of vortices in an inviscid two-dimensional fluid, Commun. Math. Phys., Vol. 87, 1982, pp. 1-36. Zbl0505.76037MR680646
  11. [11] A. Guionnet, Fluctuations for strongly interacting random variables and Wigner's law, to appear in Prob. Th. Rel. Fields, 1996. 
  12. [12] G. Joyce, D. Montgomery, Negative temperature states for the two dimensional guiding-centre plasma, J. Plasma Phys., Vol. 10, part 1, 1973, pp. 107-121. 
  13. [13] M. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Commun. Pure Appl. Math., Vol. 46, 1, 1993, pp. 27-56. Zbl0811.76002MR1193342
  14. [14] M. Kiessling, J. Lebowitz, The micro-canonical point vortex ensemble : beyond equivalence, Lett. Math. Phys., Vol. 42, 1, 1997, pp. 43-58. Zbl0902.76021MR1473359
  15. [15] C. Marchioro, M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Springer, Applied Math. sciences, Vol. 96, 1995. Zbl0789.76002MR1245492
  16. [16] L. Onsager, Statistical hydrodynamics, Supplemento al Nuovo Cimento, Vol. 6, 1949, pp. 279-287. MR36116
  17. [17] S. Schochet, The point vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math., Vol. 49, 9, 1996, pp. 911-965. Zbl0862.35092MR1399201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.