About the stationary states of vortex systems
Thierry Bodineau; Alice Guionnet
Annales de l'I.H.P. Probabilités et statistiques (1999)
- Volume: 35, Issue: 2, page 205-237
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] M.A. Arcones, E. Gine, Limit Theorems for U-processes, Ann. Probab., Vol. 21, 1993, pp. 1494-1542. Zbl0789.60031MR1235426
- [2] G. Ben Arous, M. Brunaud, Méthode de Laplace : Etude variationnelle des fluctuations de diffusions de type "champ moyen", Stochastics , Vol. 31-32, 1990, pp. 79-144 Zbl0705.60046MR1080535
- [3] E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations : A statistical mechanics description, Commun. Math. Phys., Vol. 143, 1991, pp. 501-525. Zbl0745.76001MR1145596
- [4] E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations : A statistical mechanics description. Part 2Commun. Math. Phys., Vol. 174, 1995, pp. 229-260. Zbl0840.76002MR1362165
- [5] A. Dembo, O. Zeitouni, Large deviations techniques and Applications. Jones and Bartlett, 1993. Zbl0793.60030MR1202429
- [6] J.-D. Deuschel, D.W. Stroock, Larges deviations, Academic Press, 1989. Zbl0705.60029MR997938
- [7] C. Deustch, M. Lavaud, Equilibrium properties of a two dimensional Coulomb gas, Phys. Rev. A, Vol. 9, 6, 1973, pp. 2598-2616.
- [8] G.L. Eyink, H. Spohn, Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence, J. Stat. Phys., Vol. 70, Nov. 3/4, 1993, pp. 833-886. Zbl0945.82568MR1203717
- [9] J. Fröhlich, Classical and quantum statistical mechanics in one and two dimensions, two component Yukawa and Coulomb systems, Commun. Math. Phys., Vol. 47, 1976, pp. 233-268. Zbl1092.82505MR434278
- [10] J. Fröhlich, D. Ruelle, Statistical mechanics of vortices in an inviscid two-dimensional fluid, Commun. Math. Phys., Vol. 87, 1982, pp. 1-36. Zbl0505.76037MR680646
- [11] A. Guionnet, Fluctuations for strongly interacting random variables and Wigner's law, to appear in Prob. Th. Rel. Fields, 1996.
- [12] G. Joyce, D. Montgomery, Negative temperature states for the two dimensional guiding-centre plasma, J. Plasma Phys., Vol. 10, part 1, 1973, pp. 107-121.
- [13] M. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Commun. Pure Appl. Math., Vol. 46, 1, 1993, pp. 27-56. Zbl0811.76002MR1193342
- [14] M. Kiessling, J. Lebowitz, The micro-canonical point vortex ensemble : beyond equivalence, Lett. Math. Phys., Vol. 42, 1, 1997, pp. 43-58. Zbl0902.76021MR1473359
- [15] C. Marchioro, M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Springer, Applied Math. sciences, Vol. 96, 1995. Zbl0789.76002MR1245492
- [16] L. Onsager, Statistical hydrodynamics, Supplemento al Nuovo Cimento, Vol. 6, 1949, pp. 279-287. MR36116
- [17] S. Schochet, The point vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math., Vol. 49, 9, 1996, pp. 911-965. Zbl0862.35092MR1399201