Asymptotic expansion of stochastic oscillatory integrals with rotation invariance
Annales de l'I.H.P. Probabilités et statistiques (1999)
- Volume: 35, Issue: 4, page 417-457
- ISSN: 0246-0203
Access Full Article
topHow to cite
topUeki, Naomasa. "Asymptotic expansion of stochastic oscillatory integrals with rotation invariance." Annales de l'I.H.P. Probabilités et statistiques 35.4 (1999): 417-457. <http://eudml.org/doc/77635>.
@article{Ueki1999,
author = {Ueki, Naomasa},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Wiener integrals; asymptotic expansions; oscillatory integrals; diffusion processes},
language = {eng},
number = {4},
pages = {417-457},
publisher = {Gauthier-Villars},
title = {Asymptotic expansion of stochastic oscillatory integrals with rotation invariance},
url = {http://eudml.org/doc/77635},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Ueki, Naomasa
TI - Asymptotic expansion of stochastic oscillatory integrals with rotation invariance
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 4
SP - 417
EP - 457
LA - eng
KW - Wiener integrals; asymptotic expansions; oscillatory integrals; diffusion processes
UR - http://eudml.org/doc/77635
ER -
References
top- [1] G. Ben Arous, Methods de Laplace et de la phase stationnaire sur l'espace de Wiener, Stochasics25 (1988) 125-153. Zbl0666.60026MR999365
- [2] I.M. Davies and A. Truman, Laplace asymptotic expansions of conditional Wiener integrals and generalised Mehler kernel formulae for Hamiltonians on L2(Rn), J. Phys. A: Math. Gen.17 (1984) 2773-2789. Zbl0558.60048MR771765
- [3] L. Erdös, Estimates on stochastic oscillatory integrals and on the heat kernel of the magnetic Schrödinger operator, Duke Math. J.76 (1994) 541-566. Zbl0815.60056MR1302324
- [4] L. Erdös, Magnetic Lieb-Thirring inequalities, Comm. Math. Phys.170 (1995) 629-668. Zbl0843.47040MR1337136
- [5] W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math.55 (1952) 468-519. Zbl0047.09303MR47886
- [6] E. Hille, On a class of orthonormal functions, Rend. Sem. Math. Univ. Padova25 ( 1956) 214-249. Zbl0071.30201MR86974
- [7] N. Ikeda, S. Kusuoka and S. Manabe, Lévy's stochastic area formula and related problem, in: M.C. Cranston and M.A. Pinsky, eds., Stochastic Analysis, Proc. Symp. Pure Math.57, Amer. Math. Soc., 1995, pp. 281-305. Zbl0837.60052
- [8] N. Ikeda and S. Manabe, Integral of differential forms along the path of diffusion processes, Publ. RIMS, Kyoto Univ. 15 (1979) 827-852. Zbl0462.60056MR566084
- [9] N. Ikeda and S. Manabe, Asymptotic formulas for stochastic oscillatory integral, in: K.D. Elworthy and N. Ikeda, eds., Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics, Longman, New York, 1993, pp. 136-155. Zbl0872.60040
- [10] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd. ed., Kodansha/North-Holland, Tokyo/Amsterdam, 1989. Zbl0684.60040MR1011252
- [11] K. Itô and H.P. Mckean, Diffusion Processes and Their Sample Paths, Springer, Berlin, 1974. Zbl0285.60063MR345224
- [12] P. Malliavin, Analyticité transverse d'opérateurs hypoelliptiques C3 sur des fibrés principaux. Spectre équivariant et courbure, C. R. Acad. Sci. 301 (1985) 767- 770. Zbl0609.35026MR817592
- [13] P. Malliavin, Analyticité réelle des lois conditionnelles de fonctionnelles additives, C. R. Acad. Sci.302 (1986) 73-78. Zbl0591.60058MR832041
- [14] P. Malliavin and S. Taniguchi, Analytic functions, Cauchy formula and stationary phase on a real abstract Wiener space, J. Funct. Anal.143 (1997) 470-528. Zbl0873.60040MR1428825
- [15] H. Matsumoto, Coalescing stochastic flows on the real line, Osaka J. Math.26 (1989) 139-158. Zbl0709.60069MR991286
- [16] H.P. Mckean, Elementary solutions for certain parabolic partial differential equations, Trans. Amer. Math. Soc.82 (1956) 519-548. Zbl0070.32003MR87012
- [17] R. Palais, Morse theory on Hilbert manifolds, Topology2 (1963) 299-340. Zbl0122.10702MR158410
- [18] M. Reed and B. Simon, Methods of Modern Mathematical Physics, II: Fourier Analysis and Self-Adjointness, Academic Press, New York, 1975. Zbl0308.47002MR493420
- [19] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
- [20] T. Sheu, Spectral properties of differential operators related to stochastic oscillatory integrals, Osaka J. Math.29 (1992) 203-231. Zbl0772.58064MR1173987
- [21] B. Simon, Functional Integration and Quantum Physics, Academic Press, London, 1979. Zbl0434.28013MR544188
- [22] B. Simon, Semi-classical analysis of low lying eigenvalues I. Non degenerate minima: Asymptotic expansions, Ann. Inst. H. Poncaré, Physique Theorique38 (1983) 295-307. Zbl0526.35027
- [23] H. Sugita and S. Taniguchi, Oscillatory integrals with quadratic phase function on a real abstract Wiener space, J. Funct. Anal.155 (1998) 229-262. Zbl0908.60045MR1623162
- [24] H. Sugita and S. Taniguchi, A remark on stochastic oscillatory integrals with respect to a pinned Wiener measure, Preprint. Zbl0937.60052MR1678030
- [25] Y. Takahashi and S. Watanabe, The Probability Functions (Onsager-Machlup Functions) of Diffusion Processes, Lecture Notes in Math., Vol. 851, Springer, Berlin, 1981, pp. 433-463. Zbl0625.60058MR620998
- [26] S. Taniguchi, On the exponential decay of oscillatory integrals on an abstract Wiener space, J. Funct. Anal.154 (1998) 424-443. Zbl0914.60016MR1612721
- [27] S. Taniguchi, Stochastic oscillatory integrals with quadratic phase function and Jacobi equations, Preprint. Zbl0936.60053
- [28] N. Ueki, Lower bounds for the spectra of Schrödinger operators with magnetic fields, J. Func. Anal.120 (1994) 344-379. Zbl0805.35025MR1266313
- [29] N. Ueki, Asymptotics of the infimum of the spectra of Schrödinger operators with magnetic fields, J. Math. Kyoto Univ.37 (1997) 615-638. Zbl0928.35032MR1625960
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.