Asymptotic expansion of stochastic oscillatory integrals with rotation invariance

Naomasa Ueki

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 4, page 417-457
  • ISSN: 0246-0203

How to cite

top

Ueki, Naomasa. "Asymptotic expansion of stochastic oscillatory integrals with rotation invariance." Annales de l'I.H.P. Probabilités et statistiques 35.4 (1999): 417-457. <http://eudml.org/doc/77635>.

@article{Ueki1999,
author = {Ueki, Naomasa},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Wiener integrals; asymptotic expansions; oscillatory integrals; diffusion processes},
language = {eng},
number = {4},
pages = {417-457},
publisher = {Gauthier-Villars},
title = {Asymptotic expansion of stochastic oscillatory integrals with rotation invariance},
url = {http://eudml.org/doc/77635},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Ueki, Naomasa
TI - Asymptotic expansion of stochastic oscillatory integrals with rotation invariance
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 4
SP - 417
EP - 457
LA - eng
KW - Wiener integrals; asymptotic expansions; oscillatory integrals; diffusion processes
UR - http://eudml.org/doc/77635
ER -

References

top
  1. [1] G. Ben Arous, Methods de Laplace et de la phase stationnaire sur l'espace de Wiener, Stochasics25 (1988) 125-153. Zbl0666.60026MR999365
  2. [2] I.M. Davies and A. Truman, Laplace asymptotic expansions of conditional Wiener integrals and generalised Mehler kernel formulae for Hamiltonians on L2(Rn), J. Phys. A: Math. Gen.17 (1984) 2773-2789. Zbl0558.60048MR771765
  3. [3] L. Erdös, Estimates on stochastic oscillatory integrals and on the heat kernel of the magnetic Schrödinger operator, Duke Math. J.76 (1994) 541-566. Zbl0815.60056MR1302324
  4. [4] L. Erdös, Magnetic Lieb-Thirring inequalities, Comm. Math. Phys.170 (1995) 629-668. Zbl0843.47040MR1337136
  5. [5] W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math.55 (1952) 468-519. Zbl0047.09303MR47886
  6. [6] E. Hille, On a class of orthonormal functions, Rend. Sem. Math. Univ. Padova25 ( 1956) 214-249. Zbl0071.30201MR86974
  7. [7] N. Ikeda, S. Kusuoka and S. Manabe, Lévy's stochastic area formula and related problem, in: M.C. Cranston and M.A. Pinsky, eds., Stochastic Analysis, Proc. Symp. Pure Math.57, Amer. Math. Soc., 1995, pp. 281-305. Zbl0837.60052
  8. [8] N. Ikeda and S. Manabe, Integral of differential forms along the path of diffusion processes, Publ. RIMS, Kyoto Univ. 15 (1979) 827-852. Zbl0462.60056MR566084
  9. [9] N. Ikeda and S. Manabe, Asymptotic formulas for stochastic oscillatory integral, in: K.D. Elworthy and N. Ikeda, eds., Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics, Longman, New York, 1993, pp. 136-155. Zbl0872.60040
  10. [10] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd. ed., Kodansha/North-Holland, Tokyo/Amsterdam, 1989. Zbl0684.60040MR1011252
  11. [11] K. Itô and H.P. Mckean, Diffusion Processes and Their Sample Paths, Springer, Berlin, 1974. Zbl0285.60063MR345224
  12. [12] P. Malliavin, Analyticité transverse d'opérateurs hypoelliptiques C3 sur des fibrés principaux. Spectre équivariant et courbure, C. R. Acad. Sci. 301 (1985) 767- 770. Zbl0609.35026MR817592
  13. [13] P. Malliavin, Analyticité réelle des lois conditionnelles de fonctionnelles additives, C. R. Acad. Sci.302 (1986) 73-78. Zbl0591.60058MR832041
  14. [14] P. Malliavin and S. Taniguchi, Analytic functions, Cauchy formula and stationary phase on a real abstract Wiener space, J. Funct. Anal.143 (1997) 470-528. Zbl0873.60040MR1428825
  15. [15] H. Matsumoto, Coalescing stochastic flows on the real line, Osaka J. Math.26 (1989) 139-158. Zbl0709.60069MR991286
  16. [16] H.P. Mckean, Elementary solutions for certain parabolic partial differential equations, Trans. Amer. Math. Soc.82 (1956) 519-548. Zbl0070.32003MR87012
  17. [17] R. Palais, Morse theory on Hilbert manifolds, Topology2 (1963) 299-340. Zbl0122.10702MR158410
  18. [18] M. Reed and B. Simon, Methods of Modern Mathematical Physics, II: Fourier Analysis and Self-Adjointness, Academic Press, New York, 1975. Zbl0308.47002MR493420
  19. [19] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
  20. [20] T. Sheu, Spectral properties of differential operators related to stochastic oscillatory integrals, Osaka J. Math.29 (1992) 203-231. Zbl0772.58064MR1173987
  21. [21] B. Simon, Functional Integration and Quantum Physics, Academic Press, London, 1979. Zbl0434.28013MR544188
  22. [22] B. Simon, Semi-classical analysis of low lying eigenvalues I. Non degenerate minima: Asymptotic expansions, Ann. Inst. H. Poncaré, Physique Theorique38 (1983) 295-307. Zbl0526.35027
  23. [23] H. Sugita and S. Taniguchi, Oscillatory integrals with quadratic phase function on a real abstract Wiener space, J. Funct. Anal.155 (1998) 229-262. Zbl0908.60045MR1623162
  24. [24] H. Sugita and S. Taniguchi, A remark on stochastic oscillatory integrals with respect to a pinned Wiener measure, Preprint. Zbl0937.60052MR1678030
  25. [25] Y. Takahashi and S. Watanabe, The Probability Functions (Onsager-Machlup Functions) of Diffusion Processes, Lecture Notes in Math., Vol. 851, Springer, Berlin, 1981, pp. 433-463. Zbl0625.60058MR620998
  26. [26] S. Taniguchi, On the exponential decay of oscillatory integrals on an abstract Wiener space, J. Funct. Anal.154 (1998) 424-443. Zbl0914.60016MR1612721
  27. [27] S. Taniguchi, Stochastic oscillatory integrals with quadratic phase function and Jacobi equations, Preprint. Zbl0936.60053
  28. [28] N. Ueki, Lower bounds for the spectra of Schrödinger operators with magnetic fields, J. Func. Anal.120 (1994) 344-379. Zbl0805.35025MR1266313
  29. [29] N. Ueki, Asymptotics of the infimum of the spectra of Schrödinger operators with magnetic fields, J. Math. Kyoto Univ.37 (1997) 615-638. Zbl0928.35032MR1625960

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.