On the density for the solution of a Burgers-type SPDE

Pierre-Luc Morien

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 4, page 459-482
  • ISSN: 0246-0203

How to cite

top

Morien, Pierre-Luc. "On the density for the solution of a Burgers-type SPDE." Annales de l'I.H.P. Probabilités et statistiques 35.4 (1999): 459-482. <http://eudml.org/doc/77636>.

@article{Morien1999,
author = {Morien, Pierre-Luc},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic Burgers equation; parabolic stochastic partial differential equation; Green kernel; Malliavin calculus; density},
language = {eng},
number = {4},
pages = {459-482},
publisher = {Gauthier-Villars},
title = {On the density for the solution of a Burgers-type SPDE},
url = {http://eudml.org/doc/77636},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Morien, Pierre-Luc
TI - On the density for the solution of a Burgers-type SPDE
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 4
SP - 459
EP - 482
LA - eng
KW - stochastic Burgers equation; parabolic stochastic partial differential equation; Green kernel; Malliavin calculus; density
UR - http://eudml.org/doc/77636
ER -

References

top
  1. [1] V. Bally, I. Gyöngy and E. Pardoux, White-noise driven parabolic SPDEs with measurable drift, J. Funct. Anal.120 (2) (1994) 484-510. Zbl0801.60049MR1266318
  2. [2] V. Bally, A. Millet and M. Sanz-SOLÉ, Approximation and support theorem in Hölder norm for parabolic SPDE's, Ann. Probab.23 (1) (1995) 178-222. Zbl0835.60053MR1330767
  3. [3] V. Bally and E. Pardoux, Malliavin calculus for white-noise driven parabolic SPDEs, Potential Analysis, to appear. Zbl0928.60040MR1644120
  4. [4] N. Bouleau and F. Hirsch, Dirichlet Forms and Analysis on the Wiener Space, De Gruyter Studies in Math., Vol. 14, Walter de Gruyter, 1991. Zbl0748.60046MR1133391
  5. [5] J.M. Burgers, The Nonlinear Diffusion Equation, Reidel, Dordrecht, 1974. Zbl0302.60048
  6. [6] G. Da Prato, A. Debussche and R. Temam, Stochastics Burgers equation, Preprint No. 27, Scuola Normale de Pisa (1995). Zbl0824.35112MR1300149
  7. [7] G. Da Prato and D. Gatarek, Stochastics Burgers equation, Stochastics and Stochastics Rep.52 (1995) 29-41. Zbl0853.35138MR1380259
  8. [8] I. Gyongy, On the stochastic Burgers equation, Stochastic Process. Appl.73 (1998) 271-299. Zbl0942.60058
  9. [9] E. Hopf, The partial differential equation ut + uux = μuxx, Comm. Pure Appl. Math.3 (1950) 201-230. Zbl0039.10403MR47234
  10. [10] N. Lanjri Zaidi and D. Nualart, Burgers equation driven by space-time white noise: absolute continuity of the solution, Preprint (1997). 
  11. [11] M. Metivier, Semimartingales, de Gruyter, 1982. Zbl0503.60054MR688144
  12. [12] P.L. Morien, Hölder and Besov regularity for the density of the solution of a white-noise driven parabolic SPDE (1995), in: Bernoulli: The Official Journal of the Bernoulli Society, to appear. Zbl0932.60072MR1681699
  13. [13] P.L. Morien, Approximation of the density of the solution of a nonlinear SDE. Application to parabolic SPDE's, Stochastic Process. Appl.69 (1997) 195-216. Zbl0911.60047MR1472951
  14. [14] D. Nualart, Malliavin Calculus and Related Fields, Springer, 1995. Zbl0837.60050MR1344217
  15. [15] E. Pardoux and Z. Tusheng, Absolute continuity of the law of the solution of a parabolic SPDE, J. Funct. Anal.112 (1993) 447-458. Zbl0777.60046MR1213146
  16. [16] J.B. . Walsh, An introduction to stochastic partial differential equations, in: Ecole d'Été de Probabilités de Saint-Flour 14, Lecture Notes in Math., Vol. 1180, Springer, 1986, pp. 265-439. Zbl0608.60060MR876085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.