On the density for the solution of a Burgers-type SPDE
Annales de l'I.H.P. Probabilités et statistiques (1999)
- Volume: 35, Issue: 4, page 459-482
- ISSN: 0246-0203
Access Full Article
topHow to cite
topMorien, Pierre-Luc. "On the density for the solution of a Burgers-type SPDE." Annales de l'I.H.P. Probabilités et statistiques 35.4 (1999): 459-482. <http://eudml.org/doc/77636>.
@article{Morien1999,
author = {Morien, Pierre-Luc},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic Burgers equation; parabolic stochastic partial differential equation; Green kernel; Malliavin calculus; density},
language = {eng},
number = {4},
pages = {459-482},
publisher = {Gauthier-Villars},
title = {On the density for the solution of a Burgers-type SPDE},
url = {http://eudml.org/doc/77636},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Morien, Pierre-Luc
TI - On the density for the solution of a Burgers-type SPDE
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 4
SP - 459
EP - 482
LA - eng
KW - stochastic Burgers equation; parabolic stochastic partial differential equation; Green kernel; Malliavin calculus; density
UR - http://eudml.org/doc/77636
ER -
References
top- [1] V. Bally, I. Gyöngy and E. Pardoux, White-noise driven parabolic SPDEs with measurable drift, J. Funct. Anal.120 (2) (1994) 484-510. Zbl0801.60049MR1266318
- [2] V. Bally, A. Millet and M. Sanz-SOLÉ, Approximation and support theorem in Hölder norm for parabolic SPDE's, Ann. Probab.23 (1) (1995) 178-222. Zbl0835.60053MR1330767
- [3] V. Bally and E. Pardoux, Malliavin calculus for white-noise driven parabolic SPDEs, Potential Analysis, to appear. Zbl0928.60040MR1644120
- [4] N. Bouleau and F. Hirsch, Dirichlet Forms and Analysis on the Wiener Space, De Gruyter Studies in Math., Vol. 14, Walter de Gruyter, 1991. Zbl0748.60046MR1133391
- [5] J.M. Burgers, The Nonlinear Diffusion Equation, Reidel, Dordrecht, 1974. Zbl0302.60048
- [6] G. Da Prato, A. Debussche and R. Temam, Stochastics Burgers equation, Preprint No. 27, Scuola Normale de Pisa (1995). Zbl0824.35112MR1300149
- [7] G. Da Prato and D. Gatarek, Stochastics Burgers equation, Stochastics and Stochastics Rep.52 (1995) 29-41. Zbl0853.35138MR1380259
- [8] I. Gyongy, On the stochastic Burgers equation, Stochastic Process. Appl.73 (1998) 271-299. Zbl0942.60058
- [9] E. Hopf, The partial differential equation ut + uux = μuxx, Comm. Pure Appl. Math.3 (1950) 201-230. Zbl0039.10403MR47234
- [10] N. Lanjri Zaidi and D. Nualart, Burgers equation driven by space-time white noise: absolute continuity of the solution, Preprint (1997).
- [11] M. Metivier, Semimartingales, de Gruyter, 1982. Zbl0503.60054MR688144
- [12] P.L. Morien, Hölder and Besov regularity for the density of the solution of a white-noise driven parabolic SPDE (1995), in: Bernoulli: The Official Journal of the Bernoulli Society, to appear. Zbl0932.60072MR1681699
- [13] P.L. Morien, Approximation of the density of the solution of a nonlinear SDE. Application to parabolic SPDE's, Stochastic Process. Appl.69 (1997) 195-216. Zbl0911.60047MR1472951
- [14] D. Nualart, Malliavin Calculus and Related Fields, Springer, 1995. Zbl0837.60050MR1344217
- [15] E. Pardoux and Z. Tusheng, Absolute continuity of the law of the solution of a parabolic SPDE, J. Funct. Anal.112 (1993) 447-458. Zbl0777.60046MR1213146
- [16] J.B. . Walsh, An introduction to stochastic partial differential equations, in: Ecole d'Été de Probabilités de Saint-Flour 14, Lecture Notes in Math., Vol. 1180, Springer, 1986, pp. 265-439. Zbl0608.60060MR876085
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.