The “progressive mixture” estimator for regression trees
Annales de l'I.H.P. Probabilités et statistiques (1999)
- Volume: 35, Issue: 6, page 793-820
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBlanchard, Gilles. "The “progressive mixture” estimator for regression trees." Annales de l'I.H.P. Probabilités et statistiques 35.6 (1999): 793-820. <http://eudml.org/doc/77646>.
@article{Blanchard1999,
author = {Blanchard, Gilles},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {6},
pages = {793-820},
publisher = {Gauthier-Villars},
title = {The “progressive mixture” estimator for regression trees},
url = {http://eudml.org/doc/77646},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Blanchard, Gilles
TI - The “progressive mixture” estimator for regression trees
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 6
SP - 793
EP - 820
LA - eng
UR - http://eudml.org/doc/77646
ER -
References
top- [1] Y. Amit and D. Geman, Shape quantization and recognition with randomized trees, Neural Computation9 (1997) 1545-1588.
- [2] Y. Amit, D. Geman and K. Wilder, Joint induction of shape features and tree classifiers, IEEE Trans. PAMI19 (11) (1997) 1300-1306.
- [3] A. Barron and Y. Yang, Information theoretic determination of minimax rates of convergence, Department of Statistics, Yale University, 1997. Zbl0978.62008
- [4] A.A. Barron, Are Bayes rules consistent in information? in: T.M. Cover and B. Gopinath (Eds.), Open Problems in Communication and Computation, Springer, Berlin, 1987, pp. 85-91.
- [5] L. Birgé, Approximation dans les espaces métriques et théorie de l'approximation, Z. Wahrscheinlichkeitstheor. Verw. Geb.65 (1983) 181-237. Zbl0506.62026MR722129
- [6] O. Catoni, "Universal" aggregation rules with exact bias bounds, Preprint of the Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, available at http://www.proba.jussieu.fr/mathdoc/preprints/index.html#1999 (to appear in Annals of Statistics), 1999.
- [7] H. Chipman, E.I. George and E. Mcculloch, Bayesian CART model search, JASA93 (1998) 935-947.
- [8] T.M. Cover and J.A. Thomas, Elements of Information Theory, Wiley Series in Telecommunications, Wiley, New York, 1991. Zbl0762.94001MR1122806
- [9] L. Devroye and L. Györfi, Nonparametric Density Estimation: The L1 View, Wiley, New York, 1985. Zbl0546.62015MR780746
- [10] D. Helmbold and R. Shapire, Predicting nearly as well as the best pruning of a decision tree, Machine Learning27 (1997) 51-68.
- [11] F.M.J. Willems, Y.M. Shtarkov and T.J. Tjalkens, The context-tree weighting method: basic properties, IEEE Trans. Inform. Theory41 (3) (1995) 653-664. Zbl0837.94011
- [12] F.M.J. Willems, Y.M. Shtarkov and T.J. Tjalkens, Context weighting for general finite-context sources, IEEE Trans. Inform. Theory42 (5) (1996) 1514- 1520. Zbl0860.94016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.