Reflection and coalescence between independent one-dimensional brownian paths
Florin Soucaliuc; Bálint Tóth; Wendelin Werner
Annales de l'I.H.P. Probabilités et statistiques (2000)
- Volume: 36, Issue: 4, page 509-545
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] Arratia R.A., Coalescing Brownian motions on the line, Ph.D. Thesis, University of Wisconsin, Madison, 1979.
- [2] Arratia R.A., Coalescing Brownian motions on R and the voter model on Z, 1979, Incomplete manuscript; 32 pages, available on request from R. Arratia: rarratia@math.usc.edu.
- [3] Billingsley P., Convergence of Probability Measures, Wiley, New York, 1979. Zbl0172.21201MR1700749
- [4] Harris T., Coalescing and noncoalescing stochastic flows in R, Stoch. Proc. Appl.17 (1984) 187-210. Zbl0536.60016MR751202
- [5] Le Gall J.F., Some properties of planar Brownian motion, Cours de l'Ecole d'été de Probabilités de Saint-Flour 1990, Lect. Notes in Math., Vol. 1527, Springer, 1992. Zbl0779.60068MR1229519
- [6] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer, Berlin, 1991. Zbl0731.60002MR1083357
- [7] Tóth B., The 'true' self-avoiding walk with bond repulsion on Z: limit theorems, Ann. Probab.23 (1995) 1523-1556. Zbl0852.60083MR1379158
- [8] Tóth B., Werner W., The true self-repelling motion, Probab. Theory Related Fields111 (1997) 375-452. Zbl0912.60056MR1640799
- [9] Tsirelson B., Brownian coalescence as a black noise, 1998, draft.
- [10] Tsirelson B., Within and beyond the reach of Brownian innovation, in: Proc. Intern. Congress Math. (Berlin), Vol. 3, 1998, pp. 311-320. Zbl0907.60053MR1648165