EDSR, convergence en loi et homogénéisation d'EDP paraboliques semi-linéaires
Guillaume Gaudron; Etienne Pardoux
Annales de l'I.H.P. Probabilités et statistiques (2001)
- Volume: 37, Issue: 1, page 1-42
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGaudron, Guillaume, and Pardoux, Etienne. "EDSR, convergence en loi et homogénéisation d'EDP paraboliques semi-linéaires." Annales de l'I.H.P. Probabilités et statistiques 37.1 (2001): 1-42. <http://eudml.org/doc/77682>.
@article{Gaudron2001,
author = {Gaudron, Guillaume, Pardoux, Etienne},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random media; periodic media; homogenization; convergence of stochastic processes; parabolic semilinear partial differential equations; backward stochastic differential equations},
language = {fre},
number = {1},
pages = {1-42},
publisher = {Elsevier},
title = {EDSR, convergence en loi et homogénéisation d'EDP paraboliques semi-linéaires},
url = {http://eudml.org/doc/77682},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Gaudron, Guillaume
AU - Pardoux, Etienne
TI - EDSR, convergence en loi et homogénéisation d'EDP paraboliques semi-linéaires
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 1
SP - 1
EP - 42
LA - fre
KW - random media; periodic media; homogenization; convergence of stochastic processes; parabolic semilinear partial differential equations; backward stochastic differential equations
UR - http://eudml.org/doc/77682
ER -
References
top- 1 M. Avellaneda, A. Majda, Mathematical models with exact renormalization for turbulent transport, Comm. Math. Phys.Vol. 131 (1990) 381-429. Zbl0703.76042MR1065678
- 2 M. Avellaneda, A. Majda, An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows, Comm. Math. Phys.Vol. 138 (1991) 339-391. Zbl0731.76082MR1108049
- 3 A. Bensoussan, L. Boccardo, F. Murat, H convergence for quasi-linear elliptic equations with quadratic growth, Appl. Math. Optim.Vol. 26 (1992) 253-272. Zbl0795.35008MR1175481
- 4 A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structure, Stud. Math. Appl., Vol. 5, North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
- 5 P. Briand, Y. Hu, Stability of BSDEs with random terminal time and homogenization of semilinear elliptic PDEs, J. Funct. Anal.Vol. 155 (2) (1998) 455-494. Zbl0912.60081MR1624569
- 6 R. Buckdahn, Y. Hu, Probabilistic approach to homogenizations of systems of quasi-linear parabolic PDEs with periodic structure, Nonlinear Anal.Vol. 32 (5) (1998) 609-619. Zbl1016.35002MR1612034
- 7 R. Carmona, L. Xu, Homogenization for time-dependent two-dimensional incompressible Gaussian flows, Ann. Appl. Probab.Vol. 7 (1) (1997) 265-279. Zbl0879.60063MR1428759
- 8 A. Dermoune, S. Hamadene, Y. Ouknine, Backward stochastic differential equation with local time, StochasticsVol. 66 (1999) 103-119. Zbl0930.60044MR1687807
- 9 M. Freidlin, Markov processes and differential equations: asymptotic problems, in: Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel, 1996, pp. 137-152, chapter 11. Zbl0863.60049MR1399081
- 10 G. Gaudron, Scaling laws and convergence for the advection–diffusion equation, Ann. Appl. Probab.Vol. 8 (3) (1998) 649-663. Zbl0934.35215MR1627752
- 11 Gaudron G., On convergence of BSDE's and homogenization of elliptic semi-linear PDE's (soumis pour publication). Zbl1017.60077
- 12 J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss., Vol. 288, Springer-Verlag, New York, 1987. Zbl0635.60021MR959133
- 13 M. Kobylanski, Résultat d'existence et d'unicité pour des EDSR avec des générateurs à croissance quadratique, Notes aux CRAS, Sér IVol. 324 (1997) 81-86. Zbl0880.60061
- 14 Kobylanski M., Backward stochastic differential equations and partial differential equations with quadratic growth (soumis pour publication). Zbl1044.60045
- 15 T. Komorowski, G. Papanicolaou, Motion in a Gaussian, incompressible flow, Ann. Appl. Probab.Vol. 7 (1) (1997) 229-264. Zbl0880.60063MR1428758
- 16 N.V. Krylov, Controlled Diffusion Processes, Appl. Math., Vol. 14, Springer-Verlag, New York, 1980. Zbl0459.93002MR601776
- 17 C. Landim, S. Olla, H.T. Yau, Convection diffusion equation with space-time ergodic random flow, Probab. Theory Related FieldsVol. 112 (1998) 203-220. Zbl0914.60070MR1653837
- 18 P.A. Meyer, W.A. Zheng, Tightness criteria for laws of semimartingales, Ann. Inst. H. Poincaré, Probab. Statist.Vol. 20 (1984) 353-372. Zbl0551.60046MR771895
- 19 S. Olla, Homogenization of Diffusion Processes in Random Fields, Cours de l'École Doctorale de l'École Polytechnique, 1994.
- 20 E. Pardoux, BSDE's and semilinear PDE's Stochastic Analysis and Related Topics VI, The Geilo Workshop 1996, in: Progress in Probability, Vol. 42, Birkhauser, Basel, 1998, pp. 79-127. Zbl0893.60036MR1652339
- 21 E. Pardoux, BSDE's, weak convergence and homogenization of semilinear PDE's, in: Clarke F.H., Stern R.J. (Eds.), Nonlinear Analysis, Differential Equations and Control, Kluwer, Dordrecht, 1999, pp. 503-549. Zbl0959.60049MR1695013
- 22 E. Pardoux, S. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett.Vol. 14 (1990) 55-61. Zbl0692.93064MR1037747
- 23 E. Pardoux, S. Peng, Backward SDEs and quasilinear PDEs, in: Rozovskii B.L., Sowers R.B. (Eds.), Stochastic Partial Differential Equations and Their Applications, LNCIS 176, Springer, New York, 1992. Zbl0766.60079MR1176785
- 24 E. Pardoux, A.Y. Veretennikov, Averaging for backward stochastic differential equations, with application to semi-linear PDE's, Stochastics Stochastics Rep.Vol. 60 (3–4) (1997) 355-370. Zbl0891.60053MR1467720
- 25 Pardoux E., Veretennikov A.Y., On Poisson equation and diffusion approximation, Annals of Probability (à paraître). Zbl1054.60064
- 26 P. Protter, Stochastic Integration and Differential Equations, A New Approach, Appl. Math. 21, Springer, New York, 1995. Zbl0694.60047MR1037262
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.