Valeurs limites pour les éléments des chaos

Gilles Hargé

Annales de l'I.H.P. Probabilités et statistiques (2001)

  • Volume: 37, Issue: 5, page 523-554
  • ISSN: 0246-0203

How to cite

top

Hargé, Gilles. "Valeurs limites pour les éléments des chaos." Annales de l'I.H.P. Probabilités et statistiques 37.5 (2001): 523-554. <http://eudml.org/doc/77698>.

@article{Hargé2001,
author = {Hargé, Gilles},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Wiener process; iterated Ogawa integral; Wiener chaos; approximate limit; measurable norms; stochastic integral},
language = {fre},
number = {5},
pages = {523-554},
publisher = {Elsevier},
title = {Valeurs limites pour les éléments des chaos},
url = {http://eudml.org/doc/77698},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Hargé, Gilles
TI - Valeurs limites pour les éléments des chaos
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 5
SP - 523
EP - 554
LA - fre
KW - Wiener process; iterated Ogawa integral; Wiener chaos; approximate limit; measurable norms; stochastic integral
UR - http://eudml.org/doc/77698
ER -

References

top
  1. [1] A.V Balakrishnan, Applied Functional Analysis, Springer-Verlag, New York, 1963. Zbl0333.93051
  2. [2] A Budhiraja, G Kallianpur, Hilbert space valued traces and multiples Stratonovich integrals with statistical applications, Probab. Math. Statist.15 (1995) 127-163. Zbl0861.60068MR1369797
  3. [3] R.A Carmona, D Nualart, Traces of random variables on Wiener space and Onsager–Machlup functional, J. Funct. Anal.107 (2) (1992) 402-438. Zbl0760.60062MR1172033
  4. [4] L Gross, Measurable Functions on Hilbert space, Trans. Amer. Math. Soc.105 (1962) 372-390. Zbl0178.50001MR147606
  5. [5] L Gross, Abstract Wiener spaces, in: Proceedings of the Fifth Berkeley Symp. Math. Statist. Prob. II, Part I, 1967, pp. 31-42. Zbl0187.40903MR212152
  6. [6] G Hargé, A particular case of correlation inequality for the Gaussian measure, Ann. Probab.27 (4) (1999) 1939-1951. Zbl0962.28013MR1742895
  7. [7] Hargé G., Limites approximatives sur l'espace de Wiener, à paraître dans Potential Analysis. Zbl1027.60053
  8. [8] Hu Y.Z., Meyer P.A., Sur les intégrales multiples de Stratonovitch, in: Séminaire de probabilités XXII, pp. 72–81. Zbl0644.60082MR960509
  9. [9] K Itô, Multiple Wiener integral, J. Math. Soc. Japan3 (1951) 157-169. Zbl0044.12202MR44064
  10. [10] G.W Johnson, G Kallianpur, Homogeneous chaos, p-forms, scaling and the Feynman integral, Trans. Amer. Math. Soc.340 (2) (1993) 503-548. Zbl0784.60056MR1124168
  11. [11] H.H Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math., 463, Springer, Berlin, 1975. Zbl0306.28010MR461643
  12. [12] D Nualart, The Malliavin Calculus and Related Topics, Springer-Verlag, Berlin, 1995. Zbl0837.60050MR1344217
  13. [13] D Nualart, M Zakai, Generalized stochastic integrals and the Malliavin calculus, Probab. Theory Related Fields73 (1986) 255-280. Zbl0601.60053MR855226
  14. [14] D Nualart, M Zakai, On the relation between the Stratonovitch and Ogawa integrals, Ann. Probab.17 (1989) 1536-1540. Zbl0683.60035MR1048944
  15. [15] S Ogawa, Sur le produit direct du bruit blanc par lui-même, C. R. Acad. Sci. Paris (Série A)288 (1979) 359-362. Zbl0397.60047MR526135
  16. [16] S Ogawa, Quelques propriétés de l'intégrale stochastique du type non causal, Japan J. Appl. Math.1 (1984) 405-416. Zbl0637.60070MR840804
  17. [17] J Rosinski, On stochastic integration by series of Wiener integrals, Appl. Math. Optim.19 (1989) 137-155. Zbl0661.60065MR962889
  18. [18] L.A Shepp, O Zeitouni, A note on conditional exponential moments and Onsager–Machlup functionals, Ann. Probab.20 (1992) 652-654. Zbl0756.60038MR1159564
  19. [19] H Sugita, Hu–Meyer's mutiple Stratonovich integral and essential continuity of multiple Wiener integral, Bull. Sci. Math.113 (1989) 463-474. Zbl0688.60033MR1029620
  20. [20] H Sugita, Various topologies in the Wiener space and Lévy's stochastic area, Probab. Theory Related Fields91 (3/4) (1992) 283-296. Zbl0739.60075MR1151797
  21. [21] H Sugita, S Taniguchi, Oscillatory integrals with quadratic phase function on a real abstract Wiener space, J. Funct. Anal.155 (1998) 229-262. Zbl0908.60045MR1623162
  22. [22] J.L Solé, F Utzet, Stratonovitch integral and trace, Stochastics and Stochastics Reports29 (2) (1990) 203-220. Zbl0706.60056MR1041036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.