A singular large deviations phenomenon

Mihai Gradinaru; Samuel Herrmann; Bernard Roynette

Annales de l'I.H.P. Probabilités et statistiques (2001)

  • Volume: 37, Issue: 5, page 555-580
  • ISSN: 0246-0203

How to cite

top

Gradinaru, Mihai, Herrmann, Samuel, and Roynette, Bernard. "A singular large deviations phenomenon." Annales de l'I.H.P. Probabilités et statistiques 37.5 (2001): 555-580. <http://eudml.org/doc/77699>.

@article{Gradinaru2001,
author = {Gradinaru, Mihai, Herrmann, Samuel, Roynette, Bernard},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {purely discontinuous processes; finite variation processes; Brownian excursions; completely monotone Levy density},
language = {eng},
number = {5},
pages = {555-580},
publisher = {Elsevier},
title = {A singular large deviations phenomenon},
url = {http://eudml.org/doc/77699},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Gradinaru, Mihai
AU - Herrmann, Samuel
AU - Roynette, Bernard
TI - A singular large deviations phenomenon
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 5
SP - 555
EP - 580
LA - eng
KW - purely discontinuous processes; finite variation processes; Brownian excursions; completely monotone Levy density
UR - http://eudml.org/doc/77699
ER -

References

top
  1. [1] R. Bafico, P. Baldi, Small random perturbations of Peano phenomena, Stochastics6 (1982) 279-292. Zbl0487.60050MR665404
  2. [2] G. Barles, Solutions de Viscosité des Équations de Hamilton–Jacobi, Springer-Verlag, 1994. Zbl0819.35002MR1613876
  3. [3] R. Carmona, Regularity properties of Schrödinger and Dirichlet semigroups, J. Funct. Anal.33 (1979) 259-296. Zbl0419.60075MR549115
  4. [4] E.B. Davies, Properties of the Green's functions of some Schrödinger operators, J. London Math. Soc. (2)7 (1973) 483-491. Zbl0271.47003MR342847
  5. [5] E.B. Davies, One-Parameter Semigroups, Academic Press, 1980. Zbl0457.47030MR591851
  6. [6] E.B. Davies, B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet laplacians, J. Funct. Anal.59 (1984) 335-395. Zbl0568.47034MR766493
  7. [7] J.D. Deuschel, D.W. Stroock, Large Deviations, Academic Press, 1989. Zbl0705.60029MR997938
  8. [8] W.H. Fleming, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, 1993. Zbl0773.60070MR1199811
  9. [9] S. Herrmann, Ph.D. Thesis, Université Henri Poincaré, Nancy, 2001. 
  10. [10] M. Kac, On some connections between probability theory and differential and integral equations, in: Proceedings of the Second Berkeley Symposium of Math. Statist. Probab. 1950, University of California Press, 1951, pp. 189-215. Zbl0045.07002MR45333
  11. [11] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, 1991. Zbl0734.60060MR1121940
  12. [12] M. Reed, B. Simon, Methods of Modern Mathematical Physics III: Scattering Theory, Academic Press, 1979. Zbl0405.47007MR529429
  13. [13] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, 1994. Zbl0804.60001MR1303781
  14. [14] S.O. Rice, The integral of the absolute value of the pinned Wiener process calculation of its probability density by numerical integration, Ann. Probab.10 (1982) 240-243. Zbl0479.60080MR637390
  15. [15] M. Rosenblatt, On a class of Markov processes, Trans. Amer. Math. Soc.71 (1951) 120-135. Zbl0045.07703MR43406
  16. [16] L.A. Shepp, On the integral of the absolute value of the pinned Wiener process, Ann. Probab.10 (1982) 234-239. Zbl0479.60079MR637389

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.