A singular large deviations phenomenon
Mihai Gradinaru; Samuel Herrmann; Bernard Roynette
Annales de l'I.H.P. Probabilités et statistiques (2001)
- Volume: 37, Issue: 5, page 555-580
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGradinaru, Mihai, Herrmann, Samuel, and Roynette, Bernard. "A singular large deviations phenomenon." Annales de l'I.H.P. Probabilités et statistiques 37.5 (2001): 555-580. <http://eudml.org/doc/77699>.
@article{Gradinaru2001,
author = {Gradinaru, Mihai, Herrmann, Samuel, Roynette, Bernard},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {purely discontinuous processes; finite variation processes; Brownian excursions; completely monotone Levy density},
language = {eng},
number = {5},
pages = {555-580},
publisher = {Elsevier},
title = {A singular large deviations phenomenon},
url = {http://eudml.org/doc/77699},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Gradinaru, Mihai
AU - Herrmann, Samuel
AU - Roynette, Bernard
TI - A singular large deviations phenomenon
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 5
SP - 555
EP - 580
LA - eng
KW - purely discontinuous processes; finite variation processes; Brownian excursions; completely monotone Levy density
UR - http://eudml.org/doc/77699
ER -
References
top- [1] R. Bafico, P. Baldi, Small random perturbations of Peano phenomena, Stochastics6 (1982) 279-292. Zbl0487.60050MR665404
- [2] G. Barles, Solutions de Viscosité des Équations de Hamilton–Jacobi, Springer-Verlag, 1994. Zbl0819.35002MR1613876
- [3] R. Carmona, Regularity properties of Schrödinger and Dirichlet semigroups, J. Funct. Anal.33 (1979) 259-296. Zbl0419.60075MR549115
- [4] E.B. Davies, Properties of the Green's functions of some Schrödinger operators, J. London Math. Soc. (2)7 (1973) 483-491. Zbl0271.47003MR342847
- [5] E.B. Davies, One-Parameter Semigroups, Academic Press, 1980. Zbl0457.47030MR591851
- [6] E.B. Davies, B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet laplacians, J. Funct. Anal.59 (1984) 335-395. Zbl0568.47034MR766493
- [7] J.D. Deuschel, D.W. Stroock, Large Deviations, Academic Press, 1989. Zbl0705.60029MR997938
- [8] W.H. Fleming, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, 1993. Zbl0773.60070MR1199811
- [9] S. Herrmann, Ph.D. Thesis, Université Henri Poincaré, Nancy, 2001.
- [10] M. Kac, On some connections between probability theory and differential and integral equations, in: Proceedings of the Second Berkeley Symposium of Math. Statist. Probab. 1950, University of California Press, 1951, pp. 189-215. Zbl0045.07002MR45333
- [11] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, 1991. Zbl0734.60060MR1121940
- [12] M. Reed, B. Simon, Methods of Modern Mathematical Physics III: Scattering Theory, Academic Press, 1979. Zbl0405.47007MR529429
- [13] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, 1994. Zbl0804.60001MR1303781
- [14] S.O. Rice, The integral of the absolute value of the pinned Wiener process calculation of its probability density by numerical integration, Ann. Probab.10 (1982) 240-243. Zbl0479.60080MR637390
- [15] M. Rosenblatt, On a class of Markov processes, Trans. Amer. Math. Soc.71 (1951) 120-135. Zbl0045.07703MR43406
- [16] L.A. Shepp, On the integral of the absolute value of the pinned Wiener process, Ann. Probab.10 (1982) 234-239. Zbl0479.60079MR637389
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.