Subexponential tail asymptotics for a random walk with randomly placed one-way nodes
Annales de l'I.H.P. Probabilités et statistiques (2002)
- Volume: 38, Issue: 1, page 1-16
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGantert, Nina. "Subexponential tail asymptotics for a random walk with randomly placed one-way nodes." Annales de l'I.H.P. Probabilités et statistiques 38.1 (2002): 1-16. <http://eudml.org/doc/77708>.
@article{Gantert2002,
author = {Gantert, Nina},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk in random environment; large deviations; extreme values},
language = {eng},
number = {1},
pages = {1-16},
publisher = {Elsevier},
title = {Subexponential tail asymptotics for a random walk with randomly placed one-way nodes},
url = {http://eudml.org/doc/77708},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Gantert, Nina
TI - Subexponential tail asymptotics for a random walk with randomly placed one-way nodes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 1
SP - 1
EP - 16
LA - eng
KW - random walk in random environment; large deviations; extreme values
UR - http://eudml.org/doc/77708
ER -
References
top- [1] S. Alili, Asymptotic behaviour for random walks in random environments, J. Appl. Prob.36 (1999) 1-16. Zbl0946.60046MR1724844
- [2] Alili S., Chassaing P., Homogenization or slow diffusion for random walks with reflecting barriers, Tech. Rept. No 27, Prépublications de l'institut Élie Cartan, URA CNRS no 750, Université de Nancy, 1993.
- [3] F. Comets, N. Gantert, O. Zeitouni, Quenched, annealed and functional large deviations for one dimensional random walk in random environment, Probab. Theory Relat. Fields118 (2000) 65-114. Zbl0965.60098MR1785454
- [4] P. Deheuvels, On the Erdős–Rényi Theorem for random fields and sequences and its relationships with the theory of runs and spacings, Zeitschrift für Wahrscheinlichkeitstheorie verw. Gebiete70 (1985) 91-115. Zbl0548.60027
- [5] A. Dembo, Y. Peres, O. Zeitouni, Tail estimates for one-dimensional random walk in random environment, Commun. Math. Phys.181 (1996) 667-683. Zbl0868.60058MR1414305
- [6] N. Gantert, O. Zeitouni, Quenched sub-exponential tail estimates for one-dimensional random walk in random environment, Commun. Math. Phys.194 (1998) 177-190. Zbl0982.60037MR1628294
- [7] N. Gantert, O. Zeitouni, Large deviations for one-dimensional random walk in a random environment – a survey, in: Random Walks, Bolyai Society Mathematical Studies, 8, 1999, pp. 127-165. Zbl0953.60009
- [8] A. Greven, F. den Hollander, Large deviations for a random walk in random environment, Ann. Probab.22 (1994) 1381-1428. Zbl0820.60054MR1303649
- [9] M. Klass, The minimal growth rate of partial maxima, Ann. Probab.12 (1984) 380-389. Zbl0536.60038MR735844
- [10] M. Klass, The Robbins–Siegmund series criterion for partial maxima, Ann. Probab.13 (1985) 1369-1370. Zbl0576.60023
- [11] A. Pisztora, T. Povel, Large deviation principle for random walk in a quenched environment in the low speed regime, Ann. Probab.27 (1999) 1389-1413. Zbl0964.60056MR1733154
- [12] A. Pisztora, T. Povel, O. Zeitouni, Precise large deviations estimates for one dimensional random walk in random environment, Probab. Theory Relat. Fields113 (1999) 191-219. Zbl0922.60059MR1676839
- [13] F. Solomon, Random walks in random environment, Ann. Probab.3 (1975) 1-31. Zbl0305.60029MR362503
- [14] F. Spitzer, Principles of Random Walk, Springer, Berlin, 1976. Zbl0359.60003MR388547
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.