LAN and LAMN for systems of interacting diffusions with branching and immigration

Eva Löcherbach

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 1, page 59-90
  • ISSN: 0246-0203

How to cite

top

Löcherbach, Eva. "LAN and LAMN for systems of interacting diffusions with branching and immigration." Annales de l'I.H.P. Probabilités et statistiques 38.1 (2002): 59-90. <http://eudml.org/doc/77709>.

@article{Löcherbach2002,
author = {Löcherbach, Eva},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {branching diffusions; particle systems; local asymptotic normality; local asymptotic mixed normality},
language = {eng},
number = {1},
pages = {59-90},
publisher = {Elsevier},
title = {LAN and LAMN for systems of interacting diffusions with branching and immigration},
url = {http://eudml.org/doc/77709},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Löcherbach, Eva
TI - LAN and LAMN for systems of interacting diffusions with branching and immigration
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 1
SP - 59
EP - 90
LA - eng
KW - branching diffusions; particle systems; local asymptotic normality; local asymptotic mixed normality
UR - http://eudml.org/doc/77709
ER -

References

top
  1. [1] N.H Bingham, C.M Goldie, J.L Teugels, Regular Variation, Cambridge, Cambridge University Press, 1987. Zbl0617.26001MR898871
  2. [2] D.A Darling, M Kac, On occupation times for Markov processes, Trans. Amer. Math. Soc.84 (1957) 444-458. Zbl0078.32005MR84222
  3. [3] R.B Davies, Asymptotic inference when the amount of information is random, in: LeCam L, Ohlsen R (Eds.), Proceedings of the Berkeley Conference in honour of J. Neyman and J. Kiefer, Vol. 2, Monterey, Wadsworth, 1985. MR822069
  4. [4] C Dellacherie, P.A Meyer, Probabilités et Potentiel, Chapitres XII à XVI, Hermann, Paris, 1987. Zbl0624.60084MR488194
  5. [5] N El Karoui, S Peng, M.C Quenez, Backward stochastic differential equations in finance, J. Math. Finance7 (1) (1997) 1-71. Zbl0884.90035MR1434407
  6. [6] A.M Etheridge, Asymptotic behaviour of measure-valued critical branching processes, Proc. Amer. Math. Soc.118 (4) (1993) 1251-1261. Zbl0776.60106MR1100650
  7. [7] L Gorostiza, A Wakolbinger, Long time behaviour of critical branching particle systems and applications, in: Dawson D.A (Ed.), Measure Valued Processes, Stochastic Partial Differential Equations and Interacting Systems, CRM Proc. Lect. Notes, 5, AMS, Providence, 1994, pp. 119-137. Zbl0811.60068MR1278288
  8. [8] J Hájek, A characterization of limiting distributions of regular estimates, Z. Wahrscheinlichkeitsth. Verw. Geb.14 (1970) 323-330. Zbl0193.18001MR283911
  9. [9] R Höpfner, On limits of some martingales arising in recurrent Markov chains, 1988, Unpublished note. 
  10. [10] R Höpfner, On statistics of Markov step processes: representation of log-likelihood ratio processes in filtered local models, Probab. Theory Related Fields94 (1993) 375-398. Zbl0766.62051MR1198653
  11. [11] R Höpfner, M Hoffmann, E Löcherbach, Non-parametric estimation of the death rate in branching diffusions, Preprint No. 577, University Paris VI, 2000. Zbl1035.62085MR1988418
  12. [12] R Höpfner, E Löcherbach, On invariant measure for branching diffusions, 1999, Unpublished note, see http://www.mathematik.uni-mainz.de/~hoepfner. Zbl0997.60092
  13. [13] R Höpfner, E Löcherbach, Limit theorems for null recurrent Markov processes, Preprint 22, University of Mainz, 2000, see http://www.mathematik.uni-mainz.de/preprints/2200.html. Zbl1018.60074MR1949295
  14. [14] I.A Ibragimov, R.Z Khas'minskii, Statistical Estimation. Asymptotic Theory, Springer, Berlin, 1981. Zbl0467.62026MR620321
  15. [15] N Ikeda, S Watanabe, On uniqueness and non-uniqueness of solutions for a class of non-linear equations and explosion problem for branching processes, J. Fac. Sci. Tokyo, Sect. I A17 (1970) 187-214. Zbl0205.43702MR277922
  16. [16] J Jacod, A.N Shiryaev, Limit Theorems for Stochastic Processes, Springer, Berlin, 1987. Zbl0635.60021MR959133
  17. [17] P Jeganathan, On the asymptotic theory of estimation when the limit of the log-likelihood ratio is mixed normal, Sankhya44 (1982) 173-212. Zbl0584.62042MR688800
  18. [18] S Karlin, J McGregor, Occupation time laws for birth and death processes, in: Neyman J (Ed.), Proc. Fourth Berkeley Symp. Math. Stat. Prob. 2, Berkeley, University of California Press, 1961, pp. 249-273. Zbl0121.35306MR137180
  19. [19] L LeCam, G Yang, Asymptotics in Statistics, Springer, New York, 1990. Zbl0719.62003MR1066869
  20. [20] R.S Liptser, A.N Shiryaev, Statistics of Random Processes, Vols. 1, 2, Springer, New York, 1978. Zbl1008.62072
  21. [21] E Löcherbach, Likelihood ratio processes for Markovian particle systems with killing and jumps, Preprint No. 551, University Paris VI, 1999. MR1917290
  22. [22] H Luschgy, Local asymptotic mixed normality for semimartingale experiments, Probab. Theory Related Fields92 (1992) 151-176. Zbl0768.62067MR1161184
  23. [23] S Méléard, Asymptotic behavior of some interacting particle systems; McKean–Vlasov and Boltzmann models, in: Graham C, (Eds.), Probabilistic Models for Nonlinear Partial Differential Equations, Proc. Montecatini Terme 1995, Lecture Notes in Math., 1627, Springer, Berlin, 1996, pp. 42-95. Zbl0864.60077
  24. [24] A.G Pakes, On Markov branching processes with immigration, Sankhya Ser. A37 (1975) 129-138. Zbl0336.60075MR433622
  25. [25] E Pardoux, S Peng, Backward SDE's and quasilinear PDE's, in: Rozovskii B.L, Sowes R.B (Eds.), Stochastic Partial Differential Equations and their Applications, LNCIS, 176, Springer, Berlin, 1990. Zbl0766.60079
  26. [26] S Resnick, P Greenwood, A bivariate stable charakterization and domains of attraction, J. Multivar. Anal.9 (1979) 206-221. Zbl0409.62038MR538402
  27. [27] H Strasser, Mathematical Theory of Statistics, de Gruyter, Berlin, 1985. Zbl0594.62017MR812467
  28. [28] A.S Sznitman, Topics in Propagation of Chaos, Ecole d'été de Probabilités de Saint Flour XIX 1989, Lecture Notes in Math., 1464, Springer, New York, 1991. Zbl0732.60114MR1108185
  29. [29] A Touati, Théorèmes limites pour les processus de Markov récurrents, 1988, Unpublished paper. See also C. R. Acad. Sci. Paris Série I 305 (1987) 841–844. Zbl0627.60069
  30. [30] A Wakolbinger, Limits of spatial branching processes, Bernoulli1 (1995) 171-189. Zbl0868.60069MR1354460
  31. [31] A.M Zubkov, Life-periods of a branching process with immigration, Theor. Probab. Appl.17 (1972) 174-183. Zbl0267.60084MR300351

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.