Large deviations upper bounds and central limit theorems for non-commutative functionals of gaussian large random matrices
Annales de l'I.H.P. Probabilités et statistiques (2002)
- Volume: 38, Issue: 3, page 341-384
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGuionnet, Alice. "Large deviations upper bounds and central limit theorems for non-commutative functionals of gaussian large random matrices." Annales de l'I.H.P. Probabilités et statistiques 38.3 (2002): 341-384. <http://eudml.org/doc/77719>.
@article{Guionnet2002,
author = {Guionnet, Alice},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviations; random matrices; central limit theorem},
language = {eng},
number = {3},
pages = {341-384},
publisher = {Elsevier},
title = {Large deviations upper bounds and central limit theorems for non-commutative functionals of gaussian large random matrices},
url = {http://eudml.org/doc/77719},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Guionnet, Alice
TI - Large deviations upper bounds and central limit theorems for non-commutative functionals of gaussian large random matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 3
SP - 341
EP - 384
LA - eng
KW - large deviations; random matrices; central limit theorem
UR - http://eudml.org/doc/77719
ER -
References
top- [1] L. Arnold, On the asymptotic distribution of eigenvalues of random matrices, J. Math. Anal. Appl.20 (1967) 262-268. Zbl0246.60029MR217833
- [2] Z.D. Bai, Methodologies in spectral analysis of large dimensional random matrices: a review, Statistica Sinica9 (1999) 611-661. Zbl0949.60077MR1711663
- [3] G. Ben Arous, A. Guionnet, Large deviations for Wigner's law and Voiculescu's non-commutative entropy, Probab. Theory Related Fields108 (4) (1997) 517-542. Zbl0954.60029MR1465640
- [4] G. Ben Arous, O. Zeitouni, Large deviations from the circular law, ESAIM Probab. Statist.2 (1998) 123-134. Zbl0916.60022MR1660943
- [5] F.A. Berezin, Some remarks on the Wigner distribution, Teor. Mat. Fiz.17 (1973) 1163-1171. Zbl0291.60017MR465007
- [6] P. Biane, Free brownian motion, free stochastic calculus and random matrices, in: Voiculescu D. (Ed.), Free Probability Theory, Fields Institute Communication, 12, American Math. Soc. , 1997, pp. 1-19. Zbl0873.60056MR1426833
- [7] P. Biane, Calcul stochastique non-commutatif, in: Saint Flour 1993, Lect. Notes in Math., 1608, Springer, Berlin, 1995, pp. 1-96. Zbl0878.60041MR1383121
- [8] A. Boutet De Monvel, A.M. Khorunzhy, Limit theorems for random matrices, Markov Proc. Related Fields4 (1998) 175-197. Zbl0917.60040MR1641617
- [9] T. Cabanal-Duvillard, Fluctuations de la loi spectrale des grandes matrices aléatoires, Ann. Inst. H. Poincaré (2000), to appear.
- [10] T. Cabanal-Duvillard, A. Guionnet, Large deviations upper bounds and non commutative entropies for some matrices ensembles, Annals of Probab. (2001), to appear. Zbl1022.60026MR1872742
- [11] G. Casati, V. Girko, Wigner's semicircle law for band matrices, Random Operators Stochastic Equations1 (1993) 279-286. Zbl0839.60035MR1254409
- [12] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett Publishers, 1993. Zbl0793.60030MR1202429
- [13] F. Hiai, D. Petz, Eigenvalues density of the Wishart matrix and large deviations, Infinite Dimensional Anal. Quantum Prob.1 (1998) 633-646. Zbl0934.60006MR1665279
- [14] A. Guionnet, O. Zeitouni, Concentration of the spectral measure for large matrices, Elec. Comm. Prob.5 (2000) 14. Zbl0969.15010MR1781846
- [15] A. Guionnet, O. Zeitouni, Large deviations asymptotics for spherical integrals, J. Funct. Anal., in press. Zbl1002.60021MR1883414
- [16] A.M. Khorunzhy, B.A. Khoruzhenko, L.A. Pastur, Asymptotic properties of large random matrices with independent entries, J. Math. Phys.37 (1996) 5033-5060. Zbl0866.15014MR1411619
- [17] A.M. Khorunzhy, B.A. Khoruzhenko, L.A. Pastur, M.V. Shcherbina, The large n-limit in statistical mechanics and the spectral theory of disordered systems phase, Transition and Critical Phenomena15 (1992) 73-239.
- [18] K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J.91 (1998) 151-204. Zbl1039.82504MR1487983
- [19] C. Kipnis, S. Olla, S.R.S. Varadhan, Hydrodynamics and large deviation for dimple exclusion processes, Comm. Pure Appl. Math.42 (1989) 115-137. Zbl0644.76001MR978701
- [20] L.A. Pastur, V.A. Martchenko, The distribution of eigenvalues in certain sets of random matrices, Math. USSR-Sbornik72 (1967) 507-536. Zbl0152.16101MR208649
- [21] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1986. Zbl0925.00005
- [22] Y. Sinai, A. Soshnikov, Central limit theorem for traces of large random symmetric matrices with independent elements, Bol. Soc. Brasil. Math.29 (1998) 1-24. Zbl0912.15027MR1620151
- [23] D. Shlyakhtenko, Random Gaussian band matrices and freeness with amalgation, Int. Math. Res. Not.20 (1996) 1013-1025. Zbl0872.15018MR1422374
- [24] D. Shlyakhtenko, Free Fisher information with respect to a completely positive map and cost of equivalence relations, Preprint (1999). Zbl0982.46049MR1824202
- [25] D. Voiculescu, The analogues of entropy and Fisher's information measure in free probability theory, I, Commun. Math. Phys.155 (1993) 71-92. Zbl0781.60006MR1228526
- [26] D. Voiculescu, The analogues of entropy and Fisher's information measure in free probability theory, V: Noncommutative Hilbert transforms, Invent. Math.132 (1) (1998) 189-227. Zbl0930.46053MR1618636
- [27] K.W. Wachter, The strong limits of random matrix spectra for sample matrices of independent elements, Ann. Probab.6 (1978) 1-18. Zbl0374.60039MR467894
- [28] E. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. Math.67 (1958) 325-327. Zbl0085.13203MR95527
- [29] J. Wishart, The generalized product moment distribution in samples from a normal multivariate population, Biometrika20 A (1928) 32-52. Zbl54.0565.02JFM54.0565.02
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.