Large deviations upper bounds and central limit theorems for non-commutative functionals of gaussian large random matrices

Alice Guionnet

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 3, page 341-384
  • ISSN: 0246-0203

How to cite

top

Guionnet, Alice. "Large deviations upper bounds and central limit theorems for non-commutative functionals of gaussian large random matrices." Annales de l'I.H.P. Probabilités et statistiques 38.3 (2002): 341-384. <http://eudml.org/doc/77719>.

@article{Guionnet2002,
author = {Guionnet, Alice},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviations; random matrices; central limit theorem},
language = {eng},
number = {3},
pages = {341-384},
publisher = {Elsevier},
title = {Large deviations upper bounds and central limit theorems for non-commutative functionals of gaussian large random matrices},
url = {http://eudml.org/doc/77719},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Guionnet, Alice
TI - Large deviations upper bounds and central limit theorems for non-commutative functionals of gaussian large random matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 3
SP - 341
EP - 384
LA - eng
KW - large deviations; random matrices; central limit theorem
UR - http://eudml.org/doc/77719
ER -

References

top
  1. [1] L. Arnold, On the asymptotic distribution of eigenvalues of random matrices, J. Math. Anal. Appl.20 (1967) 262-268. Zbl0246.60029MR217833
  2. [2] Z.D. Bai, Methodologies in spectral analysis of large dimensional random matrices: a review, Statistica Sinica9 (1999) 611-661. Zbl0949.60077MR1711663
  3. [3] G. Ben Arous, A. Guionnet, Large deviations for Wigner's law and Voiculescu's non-commutative entropy, Probab. Theory Related Fields108 (4) (1997) 517-542. Zbl0954.60029MR1465640
  4. [4] G. Ben Arous, O. Zeitouni, Large deviations from the circular law, ESAIM Probab. Statist.2 (1998) 123-134. Zbl0916.60022MR1660943
  5. [5] F.A. Berezin, Some remarks on the Wigner distribution, Teor. Mat. Fiz.17 (1973) 1163-1171. Zbl0291.60017MR465007
  6. [6] P. Biane, Free brownian motion, free stochastic calculus and random matrices, in: Voiculescu D. (Ed.), Free Probability Theory, Fields Institute Communication, 12, American Math. Soc. , 1997, pp. 1-19. Zbl0873.60056MR1426833
  7. [7] P. Biane, Calcul stochastique non-commutatif, in: Saint Flour 1993, Lect. Notes in Math., 1608, Springer, Berlin, 1995, pp. 1-96. Zbl0878.60041MR1383121
  8. [8] A. Boutet De Monvel, A.M. Khorunzhy, Limit theorems for random matrices, Markov Proc. Related Fields4 (1998) 175-197. Zbl0917.60040MR1641617
  9. [9] T. Cabanal-Duvillard, Fluctuations de la loi spectrale des grandes matrices aléatoires, Ann. Inst. H. Poincaré (2000), to appear. 
  10. [10] T. Cabanal-Duvillard, A. Guionnet, Large deviations upper bounds and non commutative entropies for some matrices ensembles, Annals of Probab. (2001), to appear. Zbl1022.60026MR1872742
  11. [11] G. Casati, V. Girko, Wigner's semicircle law for band matrices, Random Operators Stochastic Equations1 (1993) 279-286. Zbl0839.60035MR1254409
  12. [12] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett Publishers, 1993. Zbl0793.60030MR1202429
  13. [13] F. Hiai, D. Petz, Eigenvalues density of the Wishart matrix and large deviations, Infinite Dimensional Anal. Quantum Prob.1 (1998) 633-646. Zbl0934.60006MR1665279
  14. [14] A. Guionnet, O. Zeitouni, Concentration of the spectral measure for large matrices, Elec. Comm. Prob.5 (2000) 14. Zbl0969.15010MR1781846
  15. [15] A. Guionnet, O. Zeitouni, Large deviations asymptotics for spherical integrals, J. Funct. Anal., in press. Zbl1002.60021MR1883414
  16. [16] A.M. Khorunzhy, B.A. Khoruzhenko, L.A. Pastur, Asymptotic properties of large random matrices with independent entries, J. Math. Phys.37 (1996) 5033-5060. Zbl0866.15014MR1411619
  17. [17] A.M. Khorunzhy, B.A. Khoruzhenko, L.A. Pastur, M.V. Shcherbina, The large n-limit in statistical mechanics and the spectral theory of disordered systems phase, Transition and Critical Phenomena15 (1992) 73-239. 
  18. [18] K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J.91 (1998) 151-204. Zbl1039.82504MR1487983
  19. [19] C. Kipnis, S. Olla, S.R.S. Varadhan, Hydrodynamics and large deviation for dimple exclusion processes, Comm. Pure Appl. Math.42 (1989) 115-137. Zbl0644.76001MR978701
  20. [20] L.A. Pastur, V.A. Martchenko, The distribution of eigenvalues in certain sets of random matrices, Math. USSR-Sbornik72 (1967) 507-536. Zbl0152.16101MR208649
  21. [21] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1986. Zbl0925.00005
  22. [22] Y. Sinai, A. Soshnikov, Central limit theorem for traces of large random symmetric matrices with independent elements, Bol. Soc. Brasil. Math.29 (1998) 1-24. Zbl0912.15027MR1620151
  23. [23] D. Shlyakhtenko, Random Gaussian band matrices and freeness with amalgation, Int. Math. Res. Not.20 (1996) 1013-1025. Zbl0872.15018MR1422374
  24. [24] D. Shlyakhtenko, Free Fisher information with respect to a completely positive map and cost of equivalence relations, Preprint (1999). Zbl0982.46049MR1824202
  25. [25] D. Voiculescu, The analogues of entropy and Fisher's information measure in free probability theory, I, Commun. Math. Phys.155 (1993) 71-92. Zbl0781.60006MR1228526
  26. [26] D. Voiculescu, The analogues of entropy and Fisher's information measure in free probability theory, V: Noncommutative Hilbert transforms, Invent. Math.132 (1) (1998) 189-227. Zbl0930.46053MR1618636
  27. [27] K.W. Wachter, The strong limits of random matrix spectra for sample matrices of independent elements, Ann. Probab.6 (1978) 1-18. Zbl0374.60039MR467894
  28. [28] E. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. Math.67 (1958) 325-327. Zbl0085.13203MR95527
  29. [29] J. Wishart, The generalized product moment distribution in samples from a normal multivariate population, Biometrika20 A (1928) 32-52. Zbl54.0565.02JFM54.0565.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.