Convergence of local type Dirichlet forms to a non-local type one

Y. Ogura; M. Tomisaki; M. Tsuchiya

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 4, page 507-556
  • ISSN: 0246-0203

How to cite

top

Ogura, Y., Tomisaki, M., and Tsuchiya, M.. "Convergence of local type Dirichlet forms to a non-local type one." Annales de l'I.H.P. Probabilités et statistiques 38.4 (2002): 507-556. <http://eudml.org/doc/77724>.

@article{Ogura2002,
author = {Ogura, Y., Tomisaki, M., Tsuchiya, M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Dirichlet forms of diffusion processes; Markov semigroups; Feller property; limit Dirichlet form; partial differential equation},
language = {eng},
number = {4},
pages = {507-556},
publisher = {Elsevier},
title = {Convergence of local type Dirichlet forms to a non-local type one},
url = {http://eudml.org/doc/77724},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Ogura, Y.
AU - Tomisaki, M.
AU - Tsuchiya, M.
TI - Convergence of local type Dirichlet forms to a non-local type one
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 4
SP - 507
EP - 556
LA - eng
KW - Dirichlet forms of diffusion processes; Markov semigroups; Feller property; limit Dirichlet form; partial differential equation
UR - http://eudml.org/doc/77724
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] S. Albeverio, S. Kusuoka, L. Streit, Convergence of Dirichlet forms and associated Schrödinger operators, J. Funct. Anal.68 (1986) 130-148. Zbl0633.47027MR852657
  3. [3] D.G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc.73 (1967) 890-896. Zbl0153.42002MR217444
  4. [4] D.G. Aronson, J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal.25 (1967) 81-122. Zbl0154.12001MR244638
  5. [5] W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math.55 (1952) 468-519. Zbl0047.09303MR47886
  6. [6] M. Fukushima, Y. Oshima, On the skew product of symmetric diffusion processes, Forum Math.1 (1989) 103-142. Zbl0656.60083MR990139
  7. [7] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
  8. [8] Y. Hashimoto, S. Manabe, Y. Ogura, Short time asymptotics and an approximation for heat kernel of a singular diffusion, in: Ikeda N., Watanabe S., Fukushima M., Kunita H. (Eds.), Itô's Stochastic Calculus and Probability Theory, Springer, 1996, pp. 129-139. Zbl0866.60066MR1439521
  9. [9] K. Itô, H.P. McKean, Diffusion Processes and their Sample Paths, Springer, 1974. Zbl0127.09503MR345224
  10. [10] A. Kasue, H. Kumura, Y. Ogura, Convergence of heat kernels on a compact manifold, Kyushu J. Math.51 (1997) 453-524. Zbl0914.58031MR1470166
  11. [11] H. Kunita, General boundary conditions for multi-dimensional diffusion processes, J. Math. Kyoto Univ.10 (1970) 273-335. Zbl0204.41502MR270445
  12. [12] K. Kuwae, T. Uemura, Weak convergence of symmetric diffusion processes, Probab. Theory Related Fields109 (1997) 159-187. Zbl0916.31006MR1477648
  13. [13] O.A. Ladyženskaya, V.A. Solonnikov, N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., American Mathematical Society, 1968. Zbl0174.15403
  14. [14] T.J. Lyons, T.S. Zhang, Note on convergence of Dirichlet processes, Bull. London Math. Soc.25 (1993) 353-356. Zbl0793.31006MR1222728
  15. [15] U. Mosco, Composite media and asymptotic Dirichlet forms, J. Funct. Anal.123 (1994) 368-421. Zbl0808.46042MR1283033
  16. [16] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math.80 (1958) 931-954. Zbl0096.06902MR100158
  17. [17] Y. Ogura, S. Taniguchi, A probabilistic scheme for collapse of metrics, J. Math. Kyoto Univ.36 (1996) 73-92. Zbl1002.58521MR1381540
  18. [18] Y. Ogura, M. Tomisaki, M. Tsuchiya, Superposition of diffusion processes – Feller property, in: Trends in Probability and Related Analysis, World Scientific, 1999, pp. 113-128. Zbl1001.60082
  19. [19] Y. Ogura, M. Tomisaki, M. Tsuchiya, Existence of a strong solution for an integro-differential equation and superposition of diffusion processes, in: Stochastics in Finite/Infinite Dimensions (In honor of Gopinath Kallianpur), Birkhäuser, 2001, pp. 341-359. Zbl0985.47037MR1797095
  20. [20] N.I. Portenko, Diffusion in a medium with a semi-transparent diaphragms, in: Stochastic Processes and Related Topics (Stochastic Monographs Vol. 10), Gordon and Breach, 1996, pp. 117-128. Zbl0864.60068
  21. [21] G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinus, Séminaire sur les equations aux dérivées partielles, Collège de France, 1963. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.