Glauber dynamics of spin glasses at low and high temperature

Emilio De Santis

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 5, page 681-710
  • ISSN: 0246-0203

How to cite

top

De Santis, Emilio. "Glauber dynamics of spin glasses at low and high temperature." Annales de l'I.H.P. Probabilités et statistiques 38.5 (2002): 681-710. <http://eudml.org/doc/77729>.

@article{DeSantis2002,
author = {De Santis, Emilio},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {spin glass; Ising model; Glauber dynamics},
language = {eng},
number = {5},
pages = {681-710},
publisher = {Elsevier},
title = {Glauber dynamics of spin glasses at low and high temperature},
url = {http://eudml.org/doc/77729},
volume = {38},
year = {2002},
}

TY - JOUR
AU - De Santis, Emilio
TI - Glauber dynamics of spin glasses at low and high temperature
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 5
SP - 681
EP - 710
LA - eng
KW - spin glass; Ising model; Glauber dynamics
UR - http://eudml.org/doc/77729
ER -

References

top
  1. [1] M. Aizenman, R. Holley, Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin Shlosman regime, in: Percolation Theory and Ergodic Theory of Infinite Particle Systems (Minneapolis, Minn., 1984–1985), IMA Vol. Math. Appl., 8, Springer, New York, 1987, pp. 1-11. Zbl0621.60118
  2. [2] F. Cesi, C. Maes, F. Martinelli, Relaxation in disordered magnets in the Griffiths regime, Comm. Math. Phys.188 (1) (1997) 135-173. Zbl0882.60095MR1471335
  3. [3] L. Chayes, J. Machta, Graphical representations and cluster algorithms. Part I: Discrete spin system, Phys. A239 (1997) 542-601. 
  4. [4] E. De Santis, Swendsen–Wang dynamics on Zd for disordered non-ferromagnetic systems, Preprint. 
  5. [5] E. De Santis, A. Gandolfi, Bond percolation in frustrated systems, Ann. Probab.27 (4) (1999) 1781-1808. Zbl0968.60092MR1742888
  6. [6] R. Diestel, Graph Theory, Springer-Verlag, Berlin, 1997. Zbl0859.05001MR1448665
  7. [7] P. Diaconis, D. Stroock, Geometric bounds for eigenvalues of Markov chains, Ann. Appl. Probab.1 (1) (1991) 36-61. Zbl0731.60061MR1097463
  8. [8] R. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularities, Theory Probab. Appl.13 (1968) 197-224. Zbl0184.40403
  9. [9] S. Edwards, P. Anderson, Theory of spin glasses, J. Phys. F5 (1975) 965-974. 
  10. [10] J.A. Fill, Eigenvalue bounds on the convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process, Ann. Appl. Probab.1 (1) (1991) 62-87. Zbl0726.60069MR1097464
  11. [11] L. Fontes, M. Isopi, Y. Kohayakawa, P. Picco, The spectral gap of the REM under Metropolis Dynamics, Ann. Appl. Probab.8 (3) (1998) 917-943. Zbl0935.60084MR1627811
  12. [12] G. Gallavotti, A. Martin-Löf, S. Miracle-Solé, Some problems connected with the description of coexisting phases at low temperatures in the Ising model, Statistical Mechanics and Mathematical Problems, Battelle Seattle 1971 Rencontres, 1971, p. 162. 
  13. [13] A. Gandolfi, C.M. Newman, D.L. Stein, Zero-temperature dynamics of ±J spin glasses and related models, Comm. Math. Phys.214 (2000) 373-387. Zbl0978.82098MR1796026
  14. [14] G. Gielis, C. Maes, Percolation techniques in disordered spin flip dynamics: Relaxation to the unique invariant measure, Comm. Math. Phys.177 (1) (1996) 83-101. Zbl0851.60096MR1382221
  15. [15] R.J. Glauber, Time dependent statistics of the Ising model, J. Math. Phys.4 (1963) 294-307. Zbl0145.24003MR148410
  16. [16] R. Griffiths, Non-analytic behavior above the critical point in a random Ising ferromagnet, Phys. Rev. Lett.23 (1969) 17-19. 
  17. [17] H. Kesten, Percolation Theory for Mathematicians, Progress in Probability and Statistics, Birkhäuser, 1982. Zbl0522.60097MR692943
  18. [18] O. Lanford, D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys.13 (1969) 194-215. MR256687
  19. [19] T. Liggett, Interacting Particle Systems, Springer-Verlag, Berlin, 1985. Zbl0559.60078MR776231
  20. [20] S.L. Lu, H.T. Yau, Spectral gap logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys.156 (2) (1993) 399-433. Zbl0779.60078MR1233852
  21. [21] F. Martinelli, E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region I. The attractive case, Comm. Math. Phys.161 (3) (1994) 447-486. Zbl0793.60110MR1269387
  22. [22] F. Martinelli, E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region II. The general case, Comm. Math. Phys.161 (3) (1994) 487-514. Zbl0793.60111MR1269388
  23. [23] F. Martinelli, E. Olivieri, R.H. Schonmann, Systems weak mixing implies strong mixing, Comm. Math. Phys.165 (1) (1994) 33-47. Zbl0811.60097MR1298940
  24. [24] F. Martinelli, E. Olivieri, E. Scoppola, On the Swendsen–Wang dynamics. II. Critical droplets and homogeneous nucleation at low temperature for the two-dimensional Ising Model, J. Statist. Phys.62 (1–2) (1991) 135-159. Zbl0739.60098
  25. [25] C.M. Newman, D.L. Stein, Zero-temperature dynamics of Ising spin systems following a deep quench: results and open problems, Phys. A279 (2000) 159-168. MR1797138
  26. [26] R. Swendsen, J. Wang, Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett.58 (86) (1987) 86-88. 
  27. [27] L.E. Thomas, Bound on the mass gap for finite volume stochastic Ising models at low temperature, Comm. Math. Phys.126 (1) (1989) 1-11. Zbl0679.60102MR1027910
  28. [28] D.W. Stroock, B. Zegarlinski, The logarithmic Sobolev inequality for discrete spin systems on a lattice, Comm. Math. Phys.149 (1) (1992) 175-193. Zbl0758.60070MR1182416
  29. [29] B. Zegarlinski, On log-Sobolev inequalities for infinite lattice systems, Lett. Math. Phys.20 (3) (1990) 173-182. Zbl0717.47015MR1074698

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.