Sur une inégalité de Littlewood-Salem

Aihua Fan; Dominique Schneider

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 2, page 193-216
  • ISSN: 0246-0203

How to cite

top

Fan, Aihua, and Schneider, Dominique. "Sur une inégalité de Littlewood-Salem." Annales de l'I.H.P. Probabilités et statistiques 39.2 (2003): 193-216. <http://eudml.org/doc/77759>.

@article{Fan2003,
author = {Fan, Aihua, Schneider, Dominique},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Littlewood-Salem inequality; random polynomial; uniform norm; spectral measure; Gaussian process; local regularities; random series of Rademacher type},
language = {fre},
number = {2},
pages = {193-216},
publisher = {Elsevier},
title = {Sur une inégalité de Littlewood-Salem},
url = {http://eudml.org/doc/77759},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Fan, Aihua
AU - Schneider, Dominique
TI - Sur une inégalité de Littlewood-Salem
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 2
SP - 193
EP - 216
LA - fre
KW - Littlewood-Salem inequality; random polynomial; uniform norm; spectral measure; Gaussian process; local regularities; random series of Rademacher type
UR - http://eudml.org/doc/77759
ER -

References

top
  1. [1] X. Fernique, Régularité de fonctions aléatoires gaussiennes stationnaires, Probab. Theory Related Fields88 (1991) 521-536. Zbl0722.60032MR1105716
  2. [2] X. Fernique, Fonctions aléatoires gaussiennes, vecteurs Gaussiens, Centre de Recherches Mathématiques, Université de Montréal, 1997. MR1472975
  3. [3] X. Fernique, Régularité des trajectoires de fonctions aléatoires gaussiennes, LNM480 (1974) 1-87. Zbl0331.60025MR413238
  4. [4] J. Hoffmann-Jorgensen, Sums of independent Banach space valued random variables, Studia Math.52 (1974) 159-186. Zbl0265.60005MR356155
  5. [5] J.-P. Kahane, Propriétés locales des fonctions à séries de Fourier aléatoires, Studia Math.19 (1960) 1-25. Zbl0096.11402MR117506
  6. [6] J.-P. Kahane, Séries trigonométriques absolument convergentes, Springer, 1970. MR275043
  7. [7] J.-P. Kahane, Some Random Series of Functions, Camb. Univ. Press, 1985. Zbl0805.60007MR833073
  8. [8] U. Krengel, Ergodic Theorems, W. de Gruyter, 1985. Zbl0575.28009MR797411
  9. [9] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer-Verlag, 1990. Zbl0748.60004MR1102015
  10. [10] M.B. Marcus, G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Annals of Mathematics Studies, Princeton Univ. Press, 1981. Zbl0474.43004MR630532
  11. [11] H. Queffelec, Quelques remarques autour de l'inégalité de Bohr ∑p≤N,ppremier|cp|≤supt∈R|∑1Ncnnit|, C. R. Acad. Sc. Paris Série I299 (12) (1984) 547-550. Zbl0566.43006
  12. [12] H. Queffelec, H. Bohr's vision of ordinary Dirichlet series; old and new results, J. Anal.3 (1995) 43-60. Zbl0881.11068MR1340125
  13. [13] R. Salem, A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta Math.91 (1954) 245-301. Zbl0056.29001MR65679
  14. [14] D. Schneider, Théorèmes ergodiques perturbés, Israel J. Math.101 (1997) 157-178. Zbl0897.28010MR1484874
  15. [15] M. Weber, Estimating random polynomials by means of metric entropy methods, Math. Ineq. Appl.3 (3) (2000) 443-457. Zbl0971.60036MR1768824

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.