Projecting the surface measure of the sphere of p n

Assaf Naor; Dan Romik

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 2, page 241-261
  • ISSN: 0246-0203

How to cite


Naor, Assaf, and Romik, Dan. "Projecting the surface measure of the sphere of $\ell _p^n$." Annales de l'I.H.P. Probabilités et statistiques 39.2 (2003): 241-261. <>.

author = {Naor, Assaf, Romik, Dan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {cone measure; surface measure; projection},
language = {eng},
number = {2},
pages = {241-261},
publisher = {Elsevier},
title = {Projecting the surface measure of the sphere of $\ell _p^n$},
url = {},
volume = {39},
year = {2003},

AU - Naor, Assaf
AU - Romik, Dan
TI - Projecting the surface measure of the sphere of $\ell _p^n$
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 2
SP - 241
EP - 261
LA - eng
KW - cone measure; surface measure; projection
UR -
ER -


  1. [1] E. Artin, The Gamma Function, Holt, Rinehart and Winston, 1964. Zbl0144.06802MR165148
  2. [2] M. Antilla, K. Ball, I. Perissinaki, The central limit problem for convex bodies, Trans. Amer. Math. Soc., to appear. Zbl1033.52003MR2031057
  3. [3] K.A. Borovkov, Convergence of projections of uniform distributions on balls, Teor. Veroyatnost. i Primenen.35 (3) (1990) 547-551, (Russian). Translation in: , Theory Probab. Appl.35 (3) (1991) 546-550. Zbl0735.60018MR1091211
  4. [4] F. Barthe, M. Csörnyei, A. Naor, A note on simultaneous polar and Cartesian decomposition, Preprint. Zbl1036.52004MR2182664
  5. [5] K. Ball, I. Perissinaki, The subindependence of coordinate slabs in ℓpn balls, Israel J. Math.107 (1998) 289-299. Zbl0918.60013MR1658571
  6. [6] U. Brehm, J. Voigt, Asymptotics of cross sections of convex bodies, Beiträge Algebra Geom.41 (2000) 437-454. Zbl0983.52004MR1801435
  7. [7] P. Diaconis, D. Freedman, A dozen de Finetti-style results in search of a theory, Ann. Inst. Henri Poincaré23 (1987) 397-423. Zbl0619.60039MR898502
  8. [8] Y. Gordon, On Milman's inequality and random subspaces which escape through a mesh in Rn, in: Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., 1317, Springer, 1988, pp. 84-106. Zbl0651.46021MR950977
  9. [9] A. Koldobosky, M. Lifshits, Average volume of sections of star bodies, in: Geometric Aspects of Functional Analysis (1996–2000), Lecture Notes in Math., 1745, Springer, 2000, pp. 119-146. Zbl0973.52002
  10. [10] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. Zbl0819.28004MR1333890
  11. [11] A.A. Mogul'skiĭ, de Finetti-type results for ℓp, Sibirsk. Mat. Zh.32 (4) (1991) 88-95, (Russian). Translation in: , Siberian Math. J.32 (4) (1992) 609-616. Zbl0778.60013MR1142071
  12. [12] V. Milman, G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Springer, 1986. Zbl0606.46013MR856576
  13. [13] A. Naor, The cone measure and surface measure on the sphere of ℓpn, Preprint. Zbl1109.60006
  14. [14] S.T. Rachev, Probability Metrics and the Stability of Stochastic Models, Wiley, 1991. Zbl0744.60004MR1105086
  15. [15] S.T. Rachev, L. Rüschendorf, Approximate independence of distributions on spheres and their stability properties, Ann. Probab.19 (3) (1991) 1311-1337. Zbl0732.62014MR1112418
  16. [16] D. Romik, Measure concentration techniques for randomized central limit theorems, Preprint, 1998. 
  17. [17] D. Romik, Projections of product measures, Preprint, 1999. 
  18. [18] G. Schechtman, A remark concerning the dependence on ε in Dvoretzky's theorem, in: Geometric Aspects of Functional Analysis (1987/88), Lecture Notes in Math., 1376, Springer, 1989, pp. 274-277. Zbl0679.46011
  19. [19] G. Schechtman, J. Zinn, On the volume of the intersection of two Lpn balls, Proc. Amer. Math. Soc.110 (1) (1990) 217-224. Zbl0704.60017MR1015684

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.