Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set

Carlangelo Liverani; Véronique Maume-Deschamps

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 3, page 385-412
  • ISSN: 0246-0203

How to cite

top

Liverani, Carlangelo, and Maume-Deschamps, Véronique. "Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set." Annales de l'I.H.P. Probabilités et statistiques 39.3 (2003): 385-412. <http://eudml.org/doc/77768>.

@article{Liverani2003,
author = {Liverani, Carlangelo, Maume-Deschamps, Véronique},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {survivor; Lasota-Yorke type inequality; conditionally invariant probability measure; Perron-Frobenius operator; hole; perturbative approach},
language = {eng},
number = {3},
pages = {385-412},
publisher = {Elsevier},
title = {Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set},
url = {http://eudml.org/doc/77768},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Liverani, Carlangelo
AU - Maume-Deschamps, Véronique
TI - Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 3
SP - 385
EP - 412
LA - eng
KW - survivor; Lasota-Yorke type inequality; conditionally invariant probability measure; Perron-Frobenius operator; hole; perturbative approach
UR - http://eudml.org/doc/77768
ER -

References

top
  1. [1] H. van den Bedem, N. Chernov, Expanding maps of an interval with holes, Preprint. Zbl1022.37024MR1908547
  2. [2] G. Birkhoff, Lattice Theory, A.M.S. Colloq. Publ., Providence, 1967. Zbl0126.03801MR227053
  3. [3] V. Baladi, G. Keller, Zeta functions and transfer operator for piecewise monotone transformations, Comm. Math. Phys.127 (1990) 459-477. Zbl0703.58048MR1040891
  4. [4] N. Chernov, R. Markarian, S. Troubetzkoy, Conditionally invariant measures for Anosov maps with small holes, Ergodic Theory Dynam. Systems18 (5) (1998) 1049-1073. Zbl0982.37011MR1653291
  5. [5] P. Collet, Ergodic properties of maps of the interval, in: Bamon R., Gambaudo J.-M., Martínez S. (Eds.), Dynamical Systems, Hermann, 1996. Zbl0876.58024MR1600931
  6. [6] P. Collet, S. Martínez, B. Schmitt, The Pianigiani–Yorke measure for topological Markov chains, Israel J. Math.97 (1997) 61-70. Zbl0902.58016
  7. [7] P. Collet, S. Martínez, B. Schmitt, The Pianigiani–Yorke measure and the asymptotic law on the limit Cantor set of expanding systems, Nonlinearity7 (1994) 1437-1443. Zbl0806.58037
  8. [8] P. Collet, S. Martínez, B. Schmitt, Quasi-stationary distribution and Gibbs measure of expanding systems, Instabilities and Non-Equilibrium Structures (1996) 205-219. Zbl0897.60097MR1406590
  9. [9] P. Collet, S. Martínez, V. Maume-Deschamps, On the existence of conditionally invariant measures in dynamical systems, Nonlinearity13 (2000) 1263-1274. Zbl0974.37003MR1767958
  10. [10] P.A. Ferrari, H. Kesten, S. Martínez, P. Picco, Existence of quasi-stationary distributions. A renewal dynamical approach, Ann. Probab.23 (1995) 501-521. Zbl0827.60061MR1334159
  11. [11] P. Ferrero, B. Schmitt, Ruelle's Perron–Frobenius theorem and projective metrics, Coll. Math. Soc. J. Bollyai27 (1979). 
  12. [12] G. Keller, Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc.314 (2) (1989) 433-497. Zbl0686.58027MR1005524
  13. [13] G. Keller, C. Liverani, Stability of the Spectral Gap for transfer operators, Annali della Scuola Normale di Pisa, Classe di Scienze (4)XXVIII (1999) 141-152. Zbl0956.37003MR1679080
  14. [14] C. Liverani, Decay of correlations, Ann. of Math.142 (2) (1995) 239-301. Zbl0871.58059MR1343323
  15. [15] C. Liverani, Decay of correlations for piecewise expanding maps, J. Statist. Phys.78 (3–4) (1995) 1111-1129. Zbl1080.37501
  16. [16] C. Liverani, B. Saussol, S. Vaienti, Conformal measure and decay of correlations for covering weighted systems, Ergodic Theory Dynam. Systems18 (6) (1998) 1399-1420. Zbl0915.58061MR1658635
  17. [17] G. Pianigiani, J.A. Yorke, Expanding maps on sets which are almost invariant: decay and chaos, Trans. Amer. Math. Soc.252 (1989) 433-497. Zbl0417.28010MR534126
  18. [18] M. Rychlik, Bounded variation and invariant measures, Studia Math.71 (1982) 69-80. Zbl0575.28011MR728198
  19. [19] D. Vere-Jones, Geometric ergodicity in denumerable Markov chains, Quart. J. Math.13 (2) (1962) 7-28. Zbl0104.11805MR141160
  20. [20] M. Viana, Stochastic dynamics of deterministic systems, Brazillian Math. Colloquium, IMPA, 1997. 
  21. [21] L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems2 (1982) 109-124. Zbl0523.58024MR684248

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.