Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set
Carlangelo Liverani; Véronique Maume-Deschamps
Annales de l'I.H.P. Probabilités et statistiques (2003)
- Volume: 39, Issue: 3, page 385-412
- ISSN: 0246-0203
Access Full Article
topHow to cite
topLiverani, Carlangelo, and Maume-Deschamps, Véronique. "Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set." Annales de l'I.H.P. Probabilités et statistiques 39.3 (2003): 385-412. <http://eudml.org/doc/77768>.
@article{Liverani2003,
author = {Liverani, Carlangelo, Maume-Deschamps, Véronique},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {survivor; Lasota-Yorke type inequality; conditionally invariant probability measure; Perron-Frobenius operator; hole; perturbative approach},
language = {eng},
number = {3},
pages = {385-412},
publisher = {Elsevier},
title = {Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set},
url = {http://eudml.org/doc/77768},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Liverani, Carlangelo
AU - Maume-Deschamps, Véronique
TI - Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 3
SP - 385
EP - 412
LA - eng
KW - survivor; Lasota-Yorke type inequality; conditionally invariant probability measure; Perron-Frobenius operator; hole; perturbative approach
UR - http://eudml.org/doc/77768
ER -
References
top- [1] H. van den Bedem, N. Chernov, Expanding maps of an interval with holes, Preprint. Zbl1022.37024MR1908547
- [2] G. Birkhoff, Lattice Theory, A.M.S. Colloq. Publ., Providence, 1967. Zbl0126.03801MR227053
- [3] V. Baladi, G. Keller, Zeta functions and transfer operator for piecewise monotone transformations, Comm. Math. Phys.127 (1990) 459-477. Zbl0703.58048MR1040891
- [4] N. Chernov, R. Markarian, S. Troubetzkoy, Conditionally invariant measures for Anosov maps with small holes, Ergodic Theory Dynam. Systems18 (5) (1998) 1049-1073. Zbl0982.37011MR1653291
- [5] P. Collet, Ergodic properties of maps of the interval, in: Bamon R., Gambaudo J.-M., Martínez S. (Eds.), Dynamical Systems, Hermann, 1996. Zbl0876.58024MR1600931
- [6] P. Collet, S. Martínez, B. Schmitt, The Pianigiani–Yorke measure for topological Markov chains, Israel J. Math.97 (1997) 61-70. Zbl0902.58016
- [7] P. Collet, S. Martínez, B. Schmitt, The Pianigiani–Yorke measure and the asymptotic law on the limit Cantor set of expanding systems, Nonlinearity7 (1994) 1437-1443. Zbl0806.58037
- [8] P. Collet, S. Martínez, B. Schmitt, Quasi-stationary distribution and Gibbs measure of expanding systems, Instabilities and Non-Equilibrium Structures (1996) 205-219. Zbl0897.60097MR1406590
- [9] P. Collet, S. Martínez, V. Maume-Deschamps, On the existence of conditionally invariant measures in dynamical systems, Nonlinearity13 (2000) 1263-1274. Zbl0974.37003MR1767958
- [10] P.A. Ferrari, H. Kesten, S. Martínez, P. Picco, Existence of quasi-stationary distributions. A renewal dynamical approach, Ann. Probab.23 (1995) 501-521. Zbl0827.60061MR1334159
- [11] P. Ferrero, B. Schmitt, Ruelle's Perron–Frobenius theorem and projective metrics, Coll. Math. Soc. J. Bollyai27 (1979).
- [12] G. Keller, Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc.314 (2) (1989) 433-497. Zbl0686.58027MR1005524
- [13] G. Keller, C. Liverani, Stability of the Spectral Gap for transfer operators, Annali della Scuola Normale di Pisa, Classe di Scienze (4)XXVIII (1999) 141-152. Zbl0956.37003MR1679080
- [14] C. Liverani, Decay of correlations, Ann. of Math.142 (2) (1995) 239-301. Zbl0871.58059MR1343323
- [15] C. Liverani, Decay of correlations for piecewise expanding maps, J. Statist. Phys.78 (3–4) (1995) 1111-1129. Zbl1080.37501
- [16] C. Liverani, B. Saussol, S. Vaienti, Conformal measure and decay of correlations for covering weighted systems, Ergodic Theory Dynam. Systems18 (6) (1998) 1399-1420. Zbl0915.58061MR1658635
- [17] G. Pianigiani, J.A. Yorke, Expanding maps on sets which are almost invariant: decay and chaos, Trans. Amer. Math. Soc.252 (1989) 433-497. Zbl0417.28010MR534126
- [18] M. Rychlik, Bounded variation and invariant measures, Studia Math.71 (1982) 69-80. Zbl0575.28011MR728198
- [19] D. Vere-Jones, Geometric ergodicity in denumerable Markov chains, Quart. J. Math.13 (2) (1962) 7-28. Zbl0104.11805MR141160
- [20] M. Viana, Stochastic dynamics of deterministic systems, Brazillian Math. Colloquium, IMPA, 1997.
- [21] L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems2 (1982) 109-124. Zbl0523.58024MR684248
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.