Cut times for random walks on the discrete Heisenberg group

Sébastien Blachère

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 4, page 621-638
  • ISSN: 0246-0203

How to cite

top

Blachère, Sébastien. "Cut times for random walks on the discrete Heisenberg group." Annales de l'I.H.P. Probabilités et statistiques 39.4 (2003): 621-638. <http://eudml.org/doc/77775>.

@article{Blachère2003,
author = {Blachère, Sébastien},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {discrete Heisenberg group; random walks on groups; cut times; Green function},
language = {eng},
number = {4},
pages = {621-638},
publisher = {Elsevier},
title = {Cut times for random walks on the discrete Heisenberg group},
url = {http://eudml.org/doc/77775},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Blachère, Sébastien
TI - Cut times for random walks on the discrete Heisenberg group
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 4
SP - 621
EP - 638
LA - eng
KW - discrete Heisenberg group; random walks on groups; cut times; Green function
UR - http://eudml.org/doc/77775
ER -

References

top
  1. [1] G. Alexopoulos, Random walks on discrete groups of polynomial volume growth, Preprint. MR1905856
  2. [2] H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. (3)25 (1972) 603-614. Zbl0259.20045MR379672
  3. [3] S. Blachère, Thèse de doctorat, Université Paul Sabatier, 2000. 
  4. [4] J. Dixmier, Sur les représentations unitaries des groupes de Lie nilpotents. III, Canad. J. Math.10 (1958) 321-348. Zbl0100.32401MR95427
  5. [5] G. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc.79 (1973) 373-376. Zbl0256.35020MR315267
  6. [6] B. Gaveau, Principe de moindre action, propagation de la chaleur, et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math.139 (1977) 96-153. Zbl0366.22010MR461589
  7. [7] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. IHES53 (1981) 53-73. Zbl0474.20018MR623534
  8. [8] P. Hall, Nilpotent Groups, Queen Mary College Math. Notes, 1969. Zbl0211.34201MR283083
  9. [9] W. Hebisch, L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab.21 (1993) 673-709. Zbl0776.60086MR1217561
  10. [10] N. James, Ph.D. Dissertation, University of California, Berkeley, 1996. 
  11. [11] N. James, Y. Peres, Cutpoints and exchangeable events for random walks, Teor. Veroyatnost. i Primenen.41 (4) (1996) 854-868, translation in , Theory Probab. Appl.41 (1997) 666-677. Zbl0896.60035MR1687097
  12. [12] S. Kochen, C. Stone, A note on the Borel–Cantelli lemma, Illinois J. Math.8 (1964) 248-251. Zbl0139.35401
  13. [13] G. Lawler, Intersections of Random Walks, Birkhäuser, 1991. Zbl0925.60078MR1117680
  14. [14] A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl.1951 (39) (1951) 276-307. Zbl0034.01701MR39734
  15. [15] N. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992. Zbl0813.22003MR1218884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.