Cut times for random walks on the discrete Heisenberg group
Annales de l'I.H.P. Probabilités et statistiques (2003)
- Volume: 39, Issue: 4, page 621-638
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBlachère, Sébastien. "Cut times for random walks on the discrete Heisenberg group." Annales de l'I.H.P. Probabilités et statistiques 39.4 (2003): 621-638. <http://eudml.org/doc/77775>.
@article{Blachère2003,
author = {Blachère, Sébastien},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {discrete Heisenberg group; random walks on groups; cut times; Green function},
language = {eng},
number = {4},
pages = {621-638},
publisher = {Elsevier},
title = {Cut times for random walks on the discrete Heisenberg group},
url = {http://eudml.org/doc/77775},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Blachère, Sébastien
TI - Cut times for random walks on the discrete Heisenberg group
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 4
SP - 621
EP - 638
LA - eng
KW - discrete Heisenberg group; random walks on groups; cut times; Green function
UR - http://eudml.org/doc/77775
ER -
References
top- [1] G. Alexopoulos, Random walks on discrete groups of polynomial volume growth, Preprint. MR1905856
- [2] H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. (3)25 (1972) 603-614. Zbl0259.20045MR379672
- [3] S. Blachère, Thèse de doctorat, Université Paul Sabatier, 2000.
- [4] J. Dixmier, Sur les représentations unitaries des groupes de Lie nilpotents. III, Canad. J. Math.10 (1958) 321-348. Zbl0100.32401MR95427
- [5] G. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc.79 (1973) 373-376. Zbl0256.35020MR315267
- [6] B. Gaveau, Principe de moindre action, propagation de la chaleur, et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math.139 (1977) 96-153. Zbl0366.22010MR461589
- [7] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. IHES53 (1981) 53-73. Zbl0474.20018MR623534
- [8] P. Hall, Nilpotent Groups, Queen Mary College Math. Notes, 1969. Zbl0211.34201MR283083
- [9] W. Hebisch, L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab.21 (1993) 673-709. Zbl0776.60086MR1217561
- [10] N. James, Ph.D. Dissertation, University of California, Berkeley, 1996.
- [11] N. James, Y. Peres, Cutpoints and exchangeable events for random walks, Teor. Veroyatnost. i Primenen.41 (4) (1996) 854-868, translation in , Theory Probab. Appl.41 (1997) 666-677. Zbl0896.60035MR1687097
- [12] S. Kochen, C. Stone, A note on the Borel–Cantelli lemma, Illinois J. Math.8 (1964) 248-251. Zbl0139.35401
- [13] G. Lawler, Intersections of Random Walks, Birkhäuser, 1991. Zbl0925.60078MR1117680
- [14] A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl.1951 (39) (1951) 276-307. Zbl0034.01701MR39734
- [15] N. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992. Zbl0813.22003MR1218884
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.