On conformally invariant subsets of the planar brownian curve

Vincent Beffara

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 5, page 793-821
  • ISSN: 0246-0203

How to cite

top

Beffara, Vincent. "On conformally invariant subsets of the planar brownian curve." Annales de l'I.H.P. Probabilités et statistiques 39.5 (2003): 793-821. <http://eudml.org/doc/77781>.

@article{Beffara2003,
author = {Beffara, Vincent},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {generalized non-intersection exponents; planar Brownian motion; pivoting points on a planar Brownian path},
language = {eng},
number = {5},
pages = {793-821},
publisher = {Elsevier},
title = {On conformally invariant subsets of the planar brownian curve},
url = {http://eudml.org/doc/77781},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Beffara, Vincent
TI - On conformally invariant subsets of the planar brownian curve
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 5
SP - 793
EP - 821
LA - eng
KW - generalized non-intersection exponents; planar Brownian motion; pivoting points on a planar Brownian path
UR - http://eudml.org/doc/77781
ER -

References

top
  1. [1] L.V. Ahlfors, Conformal Invariants, Topics in Geometric Function Theory, McGraw-Hill, New York, 1973. Zbl0272.30012MR357743
  2. [2] R.F. Bass, K. Burdzy, Cutting Brownian Paths, Mem. Amer. Math. Soc., 657, American Mathematical Society, 1999. Zbl0937.60077MR1470913
  3. [3] M.C. Cranston, T.S. Mountford, An extension of a result of Burdzy and Lawler, Probab. Theory Related Fields89 (1991) 487-502. Zbl0725.60072MR1118560
  4. [4] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Springer, 1998. Zbl0896.60013MR1619036
  5. [5] S.N. Evans, On the Hausdorff dimension of Brownian cone points, Math. Proc. Cambridge Philos. Soc.98 (1985) 343-353. Zbl0583.60078MR795899
  6. [6] J.-P. Kahane, Some Random Series of Functions, Cambridge Stud. Adv. Math., 5, Cambridge University Press, 1993. Zbl0805.60007MR833073
  7. [7] R. Kaufman, Une propriété métrique du mouvement brownien, C. R. Acad. Sci., Sér. A268 (1969) 727-728. Zbl0174.21401MR240874
  8. [8] G.F. Lawler, The dimension of the frontier of planar Brownian motion, Electron Comm. Probab.1 (1996) 29-47. Zbl0857.60083MR1386292
  9. [9] G.F. Lawler, Hausdorff dimension of cut points for Brownian motion, Electron. J. Probab.1 (1996) 1-20. Zbl0891.60078MR1386294
  10. [10] G.F. Lawler, Strict concavity of the intersection exponent for Brownian motion in two and three dimensions, Math. Phys. Electron. J.4 (1998). Zbl0909.60065MR1645225
  11. [11] G.F. Lawler, Geometric and fractal properties of Brownian motion and random walk paths in two and three dimensions, in: Random Walks (Budapest 1998), Bolyai Soc. Math. Stud., 9, 1999, pp. 219-258. Zbl0955.60076MR1752896
  12. [12] G.F. Lawler, E.E. Puckette, The intersection exponent for simple random walks, Comb. Prob. Comp.9 (2000) 441-464. Zbl0974.60088MR1810151
  13. [13] G.F. Lawler, O. Schramm, W. Werner, The dimension of the Brownian frontier is 4/3, Math. Rev. Lett.8 (2001) 13-24. Zbl0993.60085
  14. [14] G.F. Lawler, O. Schramm, W. Werner, Values of Brownian intersection exponents I: Half-plane exponents, Acta Math.187 (2001) 237-273. Zbl1005.60097MR1879850
  15. [15] G.F. Lawler, O. Schramm, W. Werner, Values of Brownian intersection exponents II: Plane exponents, Acta Math.187 (2001) 275-308. Zbl0993.60083MR1879851
  16. [16] G.F. Lawler, O. Schramm, W. Werner, Analyticity of intersection exponents for planar Brownian motion, Acta Math. 188 (2002), to appear. Zbl1024.60033MR1961197
  17. [17] G.F. Lawler, O. Schramm, W. Werner, Values of Brownian intersection exponents III: Two-sided exponents, Ann. Inst. H. Poincaré Probab. Statist.38 (2002) 109-123. Zbl1006.60075MR1899232
  18. [18] G.F. Lawler, W. Werner, Intersection exponents for planar Brownian motion, Ann. Probab. (1999) 1601-1642. Zbl0965.60071MR1742883
  19. [19] J.-F. Le Gall, Some properties of planar Brownian motion, in: École d'été de Probabilités de Saint-Flour XX–1990, Lecture Notes in Math., 1527, Springer, 1992. Zbl0779.60068
  20. [20] O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math.118 (2000) 221-288. Zbl0968.60093MR1776084
  21. [21] S. Smirnov, Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math.333 (2001) 239-244. Zbl0985.60090MR1851632
  22. [22] W. Werner, On Brownian disconnection exponents, Bernoulli1 (1995) 371-380. Zbl0845.60083MR1369167
  23. [23] W. Werner, Bounds for disconnection exponents, Electron. Comm. Probab.1 (1996) 19-28. Zbl0862.60069MR1386291
  24. [24] W. Werner, Critical exponents, conformal invariance and planar Brownian motion, in: Proceedings of the 3rd European Mathematical Congress, Birkhäuser, 2000. Zbl1037.60086MR1905353

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.