On the spectral function of the Poisson-Voronoi cells

André Goldman; Pierre Calka

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 6, page 1057-1082
  • ISSN: 0246-0203

How to cite

top

Goldman, André, and Calka, Pierre. "On the spectral function of the Poisson-Voronoi cells." Annales de l'I.H.P. Probabilités et statistiques 39.6 (2003): 1057-1082. <http://eudml.org/doc/77788>.

@article{Goldman2003,
author = {Goldman, André, Calka, Pierre},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic geometry; Poisson-Voronoi tessellation; typical cell; spectral function},
language = {eng},
number = {6},
pages = {1057-1082},
publisher = {Elsevier},
title = {On the spectral function of the Poisson-Voronoi cells},
url = {http://eudml.org/doc/77788},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Goldman, André
AU - Calka, Pierre
TI - On the spectral function of the Poisson-Voronoi cells
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 6
SP - 1057
EP - 1082
LA - eng
KW - stochastic geometry; Poisson-Voronoi tessellation; typical cell; spectral function
UR - http://eudml.org/doc/77788
ER -

References

top
  1. [1] T.W. Anderson, The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities, Proc. Amer. Math. Soc.6 (1955) 170-176. Zbl0066.37402MR69229
  2. [2] F. Baccelli, B. Błaszczyszyn, On a coverage process ranging from the Boolean model to the Poisson–Voronoi tessellation with applications to wireless communications, Adv. Appl. Probab.33 (2) (2001) 293-323. Zbl0986.60010
  3. [3] P. Calka, The explicit expression of the distribution of the number of sides of the typical Poisson–Voronoi cell, Adv. Appl. Probab. (2003), in press. Zbl1038.60008
  4. [4] P. Calka, Precise formulas for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional Poisson–Voronoi tessellation and a Poisson line process, Adv. Appl. Probab. (2003), submitted for publication. Zbl1045.60005
  5. [5] R. Cowan, S.N. Chiu, L. Holst, A limit theorem for the replication time of a DNA molecule, J. Appl. Probab.32 (2) (1995) 296-303. Zbl0822.92008MR1334888
  6. [6] M.D. Donsker, S.R.S. Varadhan, Asymptotics for the Wiener sausage, Comm. Pure Appl. Math.28 (4) (1975) 525-565. Zbl0333.60077MR397901
  7. [7] B.V. Fedosov, Asymptotic formulae for eigenvalues of the Laplace operator for a polyhedron, Dokl. Akad. Nauk SSSR157 (1964) 536-538. Zbl0133.36101MR164129
  8. [8] E.N. Gilbert, Random subdivisions of space into crystals, Ann. Math. Statist.33 (1962) 958-972. Zbl0242.60009MR144253
  9. [9] A. Goldman, Le spectre de certaines mosaïques poissoniennes du plan et l'enveloppe convexe du pont brownien, Probab. Theory Related Fields105 (1) (1996) 57-83. Zbl0858.35094MR1389732
  10. [10] A. Goldman, Sur une conjecture de D.G. Kendall concernant la cellule de Crofton du plan et sur sa contrepartie brownienne, Ann. Probab.26 (4) (1998) 1727-1750. Zbl0936.60009MR1675067
  11. [11] A. Goldman, P. Calka, On the spectral function of the Johnson–Mehl and Voronoi tessellations, Preprint 00-02 of LaPCS, 2000. 
  12. [12] A. Goldman, P. Calka, Sur la fonction spectrale des cellules de Poisson–Voronoi, C. R. Acad. Sci. Paris Sér. I Math.332 (9) (2001) 835-840. Zbl1008.60070
  13. [13] W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. Amer. Inst. Min. Engr.135 (1939) 416-458. 
  14. [14] M. Kac, Can one hear the shape of a drum?, part II, Amer. Math. Monthly73 (4) (1966) 1-23. Zbl0139.05603MR201237
  15. [15] I.N. Kovalenko, A simplified proof of a conjecture of D.G. Kendall concerning shapes of random polygons, J. Appl. Math. Stochastic Anal.12 (4) (1999) 301-310. Zbl0959.60007MR1736071
  16. [16] S. Kumar, R.N. Singh, Thermal conductivity of polycristalline materials, J. Amer. Cer. Soc.78 (3) (1995) 728-736. 
  17. [17] J.L. Meijering, Interface area, edge length, and number of vertices in crystal aggregates with random nucleation, Philips Res. Rep.8 (1953). Zbl0053.33401
  18. [18] J. Møller, Random Johnson–Mehl tessellations, Adv. Appl. Probab.24 (4) (1992) 814-844. Zbl0768.60014
  19. [19] J. Møller, Lectures on Random Voronoĭ Tessellations, Springer-Verlag, New York, 1994. Zbl0812.60016MR1295245
  20. [20] L. Muche, The Poisson Voronoi tessellation. III. Miles' formula, Math. Nachr.191 (1998) 247-267. Zbl0906.60009MR1621322
  21. [21] A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, Wiley, Chichester, 2000, With a foreword by D.G. Kendall. Zbl0877.52010MR1770006
  22. [22] E. Pielou, Mathematical Ecology, Wiley-Interscience, New York, 1977. Zbl0259.92001MR434494
  23. [23] M.H. Protter, Can one hear the shape of a drum? revisited, SIAM Rev.29 (2) (1987) 185-197. Zbl0645.35074MR889243
  24. [24] R.T. Rockafellar, Convex Analysis, Princeton Math. Ser., 28, Princeton University Press, Princeton, NJ, 1970. Zbl0193.18401
  25. [25] D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and its Applications, Wiley, Chichester, 1987, With a foreword by D.G. Kendall. Zbl0838.60002MR895588
  26. [26] D.W. Stroock, Probability Theory, an Analytic View, Cambridge University Press, Cambridge, 1993. Zbl0925.60004MR1267569
  27. [27] A.S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer Monographs in Math., Springer-Verlag, Berlin, 1998. Zbl0973.60003MR1717054
  28. [28] R. van de Weygaert, Fragmenting the Universe III. The construction and statistics of 3-D Voronoi tessellations, Astron. Astrophys.283 (1994) 361-406. MR1290532
  29. [29] M. van den Berg, S. Srisatkunarajah, Heat equation for a region in R2 with a polygonal boundary, J. London Math. Soc. (2)37 (1) (1988) 119-127. Zbl0609.35003MR921750
  30. [30] H. Weyl, Über die asymptotische Verteilung der Eigenwerte, Göttinger Nachr. (1911) 110-117. Zbl42.0432.03JFM42.0432.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.