On the spectral function of the Poisson-Voronoi cells
Annales de l'I.H.P. Probabilités et statistiques (2003)
- Volume: 39, Issue: 6, page 1057-1082
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGoldman, André, and Calka, Pierre. "On the spectral function of the Poisson-Voronoi cells." Annales de l'I.H.P. Probabilités et statistiques 39.6 (2003): 1057-1082. <http://eudml.org/doc/77788>.
@article{Goldman2003,
author = {Goldman, André, Calka, Pierre},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic geometry; Poisson-Voronoi tessellation; typical cell; spectral function},
language = {eng},
number = {6},
pages = {1057-1082},
publisher = {Elsevier},
title = {On the spectral function of the Poisson-Voronoi cells},
url = {http://eudml.org/doc/77788},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Goldman, André
AU - Calka, Pierre
TI - On the spectral function of the Poisson-Voronoi cells
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 6
SP - 1057
EP - 1082
LA - eng
KW - stochastic geometry; Poisson-Voronoi tessellation; typical cell; spectral function
UR - http://eudml.org/doc/77788
ER -
References
top- [1] T.W. Anderson, The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities, Proc. Amer. Math. Soc.6 (1955) 170-176. Zbl0066.37402MR69229
- [2] F. Baccelli, B. Błaszczyszyn, On a coverage process ranging from the Boolean model to the Poisson–Voronoi tessellation with applications to wireless communications, Adv. Appl. Probab.33 (2) (2001) 293-323. Zbl0986.60010
- [3] P. Calka, The explicit expression of the distribution of the number of sides of the typical Poisson–Voronoi cell, Adv. Appl. Probab. (2003), in press. Zbl1038.60008
- [4] P. Calka, Precise formulas for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional Poisson–Voronoi tessellation and a Poisson line process, Adv. Appl. Probab. (2003), submitted for publication. Zbl1045.60005
- [5] R. Cowan, S.N. Chiu, L. Holst, A limit theorem for the replication time of a DNA molecule, J. Appl. Probab.32 (2) (1995) 296-303. Zbl0822.92008MR1334888
- [6] M.D. Donsker, S.R.S. Varadhan, Asymptotics for the Wiener sausage, Comm. Pure Appl. Math.28 (4) (1975) 525-565. Zbl0333.60077MR397901
- [7] B.V. Fedosov, Asymptotic formulae for eigenvalues of the Laplace operator for a polyhedron, Dokl. Akad. Nauk SSSR157 (1964) 536-538. Zbl0133.36101MR164129
- [8] E.N. Gilbert, Random subdivisions of space into crystals, Ann. Math. Statist.33 (1962) 958-972. Zbl0242.60009MR144253
- [9] A. Goldman, Le spectre de certaines mosaïques poissoniennes du plan et l'enveloppe convexe du pont brownien, Probab. Theory Related Fields105 (1) (1996) 57-83. Zbl0858.35094MR1389732
- [10] A. Goldman, Sur une conjecture de D.G. Kendall concernant la cellule de Crofton du plan et sur sa contrepartie brownienne, Ann. Probab.26 (4) (1998) 1727-1750. Zbl0936.60009MR1675067
- [11] A. Goldman, P. Calka, On the spectral function of the Johnson–Mehl and Voronoi tessellations, Preprint 00-02 of LaPCS, 2000.
- [12] A. Goldman, P. Calka, Sur la fonction spectrale des cellules de Poisson–Voronoi, C. R. Acad. Sci. Paris Sér. I Math.332 (9) (2001) 835-840. Zbl1008.60070
- [13] W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. Amer. Inst. Min. Engr.135 (1939) 416-458.
- [14] M. Kac, Can one hear the shape of a drum?, part II, Amer. Math. Monthly73 (4) (1966) 1-23. Zbl0139.05603MR201237
- [15] I.N. Kovalenko, A simplified proof of a conjecture of D.G. Kendall concerning shapes of random polygons, J. Appl. Math. Stochastic Anal.12 (4) (1999) 301-310. Zbl0959.60007MR1736071
- [16] S. Kumar, R.N. Singh, Thermal conductivity of polycristalline materials, J. Amer. Cer. Soc.78 (3) (1995) 728-736.
- [17] J.L. Meijering, Interface area, edge length, and number of vertices in crystal aggregates with random nucleation, Philips Res. Rep.8 (1953). Zbl0053.33401
- [18] J. Møller, Random Johnson–Mehl tessellations, Adv. Appl. Probab.24 (4) (1992) 814-844. Zbl0768.60014
- [19] J. Møller, Lectures on Random Voronoĭ Tessellations, Springer-Verlag, New York, 1994. Zbl0812.60016MR1295245
- [20] L. Muche, The Poisson Voronoi tessellation. III. Miles' formula, Math. Nachr.191 (1998) 247-267. Zbl0906.60009MR1621322
- [21] A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, Wiley, Chichester, 2000, With a foreword by D.G. Kendall. Zbl0877.52010MR1770006
- [22] E. Pielou, Mathematical Ecology, Wiley-Interscience, New York, 1977. Zbl0259.92001MR434494
- [23] M.H. Protter, Can one hear the shape of a drum? revisited, SIAM Rev.29 (2) (1987) 185-197. Zbl0645.35074MR889243
- [24] R.T. Rockafellar, Convex Analysis, Princeton Math. Ser., 28, Princeton University Press, Princeton, NJ, 1970. Zbl0193.18401
- [25] D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and its Applications, Wiley, Chichester, 1987, With a foreword by D.G. Kendall. Zbl0838.60002MR895588
- [26] D.W. Stroock, Probability Theory, an Analytic View, Cambridge University Press, Cambridge, 1993. Zbl0925.60004MR1267569
- [27] A.S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer Monographs in Math., Springer-Verlag, Berlin, 1998. Zbl0973.60003MR1717054
- [28] R. van de Weygaert, Fragmenting the Universe III. The construction and statistics of 3-D Voronoi tessellations, Astron. Astrophys.283 (1994) 361-406. MR1290532
- [29] M. van den Berg, S. Srisatkunarajah, Heat equation for a region in R2 with a polygonal boundary, J. London Math. Soc. (2)37 (1) (1988) 119-127. Zbl0609.35003MR921750
- [30] H. Weyl, Über die asymptotische Verteilung der Eigenwerte, Göttinger Nachr. (1911) 110-117. Zbl42.0432.03JFM42.0432.03
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.