The functional moderate deviations for Harris recurrent Markov chains and applications
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 1, page 89-124
- ISSN: 0246-0203
Access Full Article
topHow to cite
topChen, Xia, and Guillin, Arnaud. "The functional moderate deviations for Harris recurrent Markov chains and applications." Annales de l'I.H.P. Probabilités et statistiques 40.1 (2004): 89-124. <http://eudml.org/doc/77801>.
@article{Chen2004,
author = {Chen, Xia, Guillin, Arnaud},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Harris recurent Markov chain; p-regualarity; moderate deviation; the law of the iterated logarithm},
language = {eng},
number = {1},
pages = {89-124},
publisher = {Elsevier},
title = {The functional moderate deviations for Harris recurrent Markov chains and applications},
url = {http://eudml.org/doc/77801},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Chen, Xia
AU - Guillin, Arnaud
TI - The functional moderate deviations for Harris recurrent Markov chains and applications
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 1
SP - 89
EP - 124
LA - eng
KW - Harris recurent Markov chain; p-regualarity; moderate deviation; the law of the iterated logarithm
UR - http://eudml.org/doc/77801
ER -
References
top- [1] A. de Acosta, Large deviations for vector-valued functional of Markov chain: lower bounds, Ann. Probab.16 (1988) 925-960. Zbl0657.60037MR942748
- [2] A. de Acosta, Moderate deviations for empirical measures of Markov chains: lower bounds, Ann. Probab.25 (1997) 259-284. Zbl0877.60019MR1428509
- [3] A. de Acosta, X. Chen, Moderate deviations for empirical measures of Markov chains: upper bounds, J. Theoret. Probab.11 (1998) 1075-1110. Zbl0924.60051MR1660920
- [4] K.B. Athreya, P. Ney, A new approach to the limit theory of recurrent Markov chains, Trans. Amer. Math. Soc.245 (1978) 493-501. Zbl0397.60053MR511425
- [5] J. Azema, M. Duflo, D. Revuz, Propriétés relatives des processus de Markov récurrents, Z. Wahr. Geb.13 (1969) 286-314. Zbl0181.21002MR260015
- [6] X. Chen, Limit theorems for functionals of ergodic Markov chains with general state space, Mem. Amer. Math. Soc.139 (664) (1999). Zbl0952.60014MR1491814
- [7] X. Chen, The law of the iterated logarithm for functionals of Harris recurrent Markov chains: self normalization, J. Theoret. Probab.12 (1999) 421-445. Zbl0937.60018MR1684752
- [8] X. Chen, How often does a Harris recurrent Markov chain recur?, Ann. Probab.27 (1999) 1324-1346. Zbl0981.60023MR1733150
- [9] X. Chen, On the limit laws of the second order for additive functionals of Harris recurrent Markov chains, Probab. Theory Related Fields116 (2000) 89-123. Zbl0953.60008MR1736591
- [10] X. Chen, Moderate deviations for Markovian occupation times, Stochastic Process. Appl.94 (2001) 51-70. Zbl1051.60029MR1835845
- [11] K.L. Chung, G.A. Hunt, On the zeros of ∑1n±1, Ann. of Math.50 (1949) 385-400. Zbl0032.41701
- [12] E. Csáki, M. Csörgö, On additive functionals of Markov chains, J. Theoret. Probab.8 (1995) 905-919. Zbl0834.60073MR1353559
- [13] E. Csáki, P. Salminen, On the additive functionals of diffussion processes, Studia Sci. Math. Hungar.31 (1996) 47-62. Zbl0851.60076MR1367700
- [14] A. Dembo, Q. Shao, Self-normalized moderate deviations and LILs, Stochastic Process. Appl.75 (1998) 51-65. Zbl0934.60020MR1629018
- [15] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993. Zbl0793.60030MR1202429
- [16] H. Djellout, A. Guillin, L. Wu, Large and moderate deviations for quadratic empirical processes, Stat. Inf. Stoch. Proc.2 (1999) 195-225. Zbl1059.60501MR1919867
- [17] H. Djellout, A. Guillin, Moderate deviations of Markov Chains with atom, Stochastic Process. Appl.95 (2001) 203-217. Zbl1059.60029MR1854025
- [18] M. Duflo, Random Iterative Models, Springer, New York, 1997. Zbl0868.62069MR1485774
- [19] P. Erdös, S.J. Taylor, Some problems concerning the structure of random walks, Acta Math.11 (1960) 137-162. Zbl0091.13303MR121870
- [20] N. Gantert, O. Zeitouni, Large and moderate deviations for the local time of a recurrent Markov chain on Z2, Ann. Inst. H. Poinc. (Probab. Statist.)34 (1998) 687-704. Zbl0910.60013MR1641674
- [21] A. Guillin, Uniform moderate deviations of functional empirical processes of Markov chains, Probab. Math. Stat.20 (2000) 237-260. Zbl0988.60019MR1825641
- [22] N.C. Jain, W.E. Pruitt, Asymptotic behavior for the local time of a recurrent random walk, Ann. Probab.11 (1983) 64-85. Zbl0538.60074MR723730
- [23] T. Jiang, M.B. Rao, X. Wang, D. Li, Laws of large numbers and moderate deviations for stochastic processes with stationary and independent increments, Stochastic Process. Appl.44 (1993) 205-219. Zbl0764.60033MR1200408
- [24] H. Kesten, An iterated logarithm law for local times, Duke Math. J.32 (1965) 447-456. Zbl0132.12701MR178494
- [25] J.-F Le Gall, J. Rosen, The range of stable random walks, Ann. Probab.19 (1991) 650-705. Zbl0729.60066MR1106281
- [26] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993. Zbl0925.60001MR1287609
- [27] M.B. Marcus, J. Rosen, Law of the iterated logarithm for the local times of symmetric Lévy processes and recurrent random walks, Ann. Probab.22 (1994) 626-658. Zbl0815.60073MR1288125
- [28] E. Nummelin, A splitting technique for Harris recurrent chains, Z. Wahr. Geb.43 (1978) 309-318. Zbl0364.60104MR501353
- [29] E. Nummelin, General Irreducible Markov Chains and Non-negative Operators, Cambridge University Press, Cambridge, 1984. Zbl0551.60066MR776608
- [30] S. Orey, Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand Reinhold, London, 1971. Zbl0295.60054MR324774
- [31] P. Révész, Random Walk in Random and Non-random Environments, World Scientific, London, 1990. Zbl0733.60091MR1082348
- [32] V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahr. Geb.3 (1964) 211-226. Zbl0132.12903MR175194
- [33] D. Revuz, Markov Chains, North-Holland, New York, 1975. Zbl0539.60073MR415773
- [34] A. Touati, Loi fonctionnelle du logarithme itéré pour les processus de Markov récurrents, Ann. Probab.18 (1990) 140-159. Zbl0704.60025MR1043941
- [35] L. Wu, Moderate deviations for random variables related to CLT, Ann. Probab.23 (1995) 420-445. Zbl0828.60017MR1330777
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.