The functional moderate deviations for Harris recurrent Markov chains and applications

Xia Chen; Arnaud Guillin

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 1, page 89-124
  • ISSN: 0246-0203

How to cite

top

Chen, Xia, and Guillin, Arnaud. "The functional moderate deviations for Harris recurrent Markov chains and applications." Annales de l'I.H.P. Probabilités et statistiques 40.1 (2004): 89-124. <http://eudml.org/doc/77801>.

@article{Chen2004,
author = {Chen, Xia, Guillin, Arnaud},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Harris recurent Markov chain; p-regualarity; moderate deviation; the law of the iterated logarithm},
language = {eng},
number = {1},
pages = {89-124},
publisher = {Elsevier},
title = {The functional moderate deviations for Harris recurrent Markov chains and applications},
url = {http://eudml.org/doc/77801},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Chen, Xia
AU - Guillin, Arnaud
TI - The functional moderate deviations for Harris recurrent Markov chains and applications
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 1
SP - 89
EP - 124
LA - eng
KW - Harris recurent Markov chain; p-regualarity; moderate deviation; the law of the iterated logarithm
UR - http://eudml.org/doc/77801
ER -

References

top
  1. [1] A. de Acosta, Large deviations for vector-valued functional of Markov chain: lower bounds, Ann. Probab.16 (1988) 925-960. Zbl0657.60037MR942748
  2. [2] A. de Acosta, Moderate deviations for empirical measures of Markov chains: lower bounds, Ann. Probab.25 (1997) 259-284. Zbl0877.60019MR1428509
  3. [3] A. de Acosta, X. Chen, Moderate deviations for empirical measures of Markov chains: upper bounds, J. Theoret. Probab.11 (1998) 1075-1110. Zbl0924.60051MR1660920
  4. [4] K.B. Athreya, P. Ney, A new approach to the limit theory of recurrent Markov chains, Trans. Amer. Math. Soc.245 (1978) 493-501. Zbl0397.60053MR511425
  5. [5] J. Azema, M. Duflo, D. Revuz, Propriétés relatives des processus de Markov récurrents, Z. Wahr. Geb.13 (1969) 286-314. Zbl0181.21002MR260015
  6. [6] X. Chen, Limit theorems for functionals of ergodic Markov chains with general state space, Mem. Amer. Math. Soc.139 (664) (1999). Zbl0952.60014MR1491814
  7. [7] X. Chen, The law of the iterated logarithm for functionals of Harris recurrent Markov chains: self normalization, J. Theoret. Probab.12 (1999) 421-445. Zbl0937.60018MR1684752
  8. [8] X. Chen, How often does a Harris recurrent Markov chain recur?, Ann. Probab.27 (1999) 1324-1346. Zbl0981.60023MR1733150
  9. [9] X. Chen, On the limit laws of the second order for additive functionals of Harris recurrent Markov chains, Probab. Theory Related Fields116 (2000) 89-123. Zbl0953.60008MR1736591
  10. [10] X. Chen, Moderate deviations for Markovian occupation times, Stochastic Process. Appl.94 (2001) 51-70. Zbl1051.60029MR1835845
  11. [11] K.L. Chung, G.A. Hunt, On the zeros of ∑1n±1, Ann. of Math.50 (1949) 385-400. Zbl0032.41701
  12. [12] E. Csáki, M. Csörgö, On additive functionals of Markov chains, J. Theoret. Probab.8 (1995) 905-919. Zbl0834.60073MR1353559
  13. [13] E. Csáki, P. Salminen, On the additive functionals of diffussion processes, Studia Sci. Math. Hungar.31 (1996) 47-62. Zbl0851.60076MR1367700
  14. [14] A. Dembo, Q. Shao, Self-normalized moderate deviations and LILs, Stochastic Process. Appl.75 (1998) 51-65. Zbl0934.60020MR1629018
  15. [15] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993. Zbl0793.60030MR1202429
  16. [16] H. Djellout, A. Guillin, L. Wu, Large and moderate deviations for quadratic empirical processes, Stat. Inf. Stoch. Proc.2 (1999) 195-225. Zbl1059.60501MR1919867
  17. [17] H. Djellout, A. Guillin, Moderate deviations of Markov Chains with atom, Stochastic Process. Appl.95 (2001) 203-217. Zbl1059.60029MR1854025
  18. [18] M. Duflo, Random Iterative Models, Springer, New York, 1997. Zbl0868.62069MR1485774
  19. [19] P. Erdös, S.J. Taylor, Some problems concerning the structure of random walks, Acta Math.11 (1960) 137-162. Zbl0091.13303MR121870
  20. [20] N. Gantert, O. Zeitouni, Large and moderate deviations for the local time of a recurrent Markov chain on Z2, Ann. Inst. H. Poinc. (Probab. Statist.)34 (1998) 687-704. Zbl0910.60013MR1641674
  21. [21] A. Guillin, Uniform moderate deviations of functional empirical processes of Markov chains, Probab. Math. Stat.20 (2000) 237-260. Zbl0988.60019MR1825641
  22. [22] N.C. Jain, W.E. Pruitt, Asymptotic behavior for the local time of a recurrent random walk, Ann. Probab.11 (1983) 64-85. Zbl0538.60074MR723730
  23. [23] T. Jiang, M.B. Rao, X. Wang, D. Li, Laws of large numbers and moderate deviations for stochastic processes with stationary and independent increments, Stochastic Process. Appl.44 (1993) 205-219. Zbl0764.60033MR1200408
  24. [24] H. Kesten, An iterated logarithm law for local times, Duke Math. J.32 (1965) 447-456. Zbl0132.12701MR178494
  25. [25] J.-F Le Gall, J. Rosen, The range of stable random walks, Ann. Probab.19 (1991) 650-705. Zbl0729.60066MR1106281
  26. [26] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993. Zbl0925.60001MR1287609
  27. [27] M.B. Marcus, J. Rosen, Law of the iterated logarithm for the local times of symmetric Lévy processes and recurrent random walks, Ann. Probab.22 (1994) 626-658. Zbl0815.60073MR1288125
  28. [28] E. Nummelin, A splitting technique for Harris recurrent chains, Z. Wahr. Geb.43 (1978) 309-318. Zbl0364.60104MR501353
  29. [29] E. Nummelin, General Irreducible Markov Chains and Non-negative Operators, Cambridge University Press, Cambridge, 1984. Zbl0551.60066MR776608
  30. [30] S. Orey, Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand Reinhold, London, 1971. Zbl0295.60054MR324774
  31. [31] P. Révész, Random Walk in Random and Non-random Environments, World Scientific, London, 1990. Zbl0733.60091MR1082348
  32. [32] V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahr. Geb.3 (1964) 211-226. Zbl0132.12903MR175194
  33. [33] D. Revuz, Markov Chains, North-Holland, New York, 1975. Zbl0539.60073MR415773
  34. [34] A. Touati, Loi fonctionnelle du logarithme itéré pour les processus de Markov récurrents, Ann. Probab.18 (1990) 140-159. Zbl0704.60025MR1043941
  35. [35] L. Wu, Moderate deviations for random variables related to CLT, Ann. Probab.23 (1995) 420-445. Zbl0828.60017MR1330777

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.