Existence of non-uniform cocycles on uniquely ergodic systems

Daniel Lenz

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 2, page 197-206
  • ISSN: 0246-0203

How to cite

top

Lenz, Daniel. "Existence of non-uniform cocycles on uniquely ergodic systems." Annales de l'I.H.P. Probabilités et statistiques 40.2 (2004): 197-206. <http://eudml.org/doc/77806>.

@article{Lenz2004,
author = {Lenz, Daniel},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Ergodic theorem; Uniform cocycle; Hyperbolicity},
language = {eng},
number = {2},
pages = {197-206},
publisher = {Elsevier},
title = {Existence of non-uniform cocycles on uniquely ergodic systems},
url = {http://eudml.org/doc/77806},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Lenz, Daniel
TI - Existence of non-uniform cocycles on uniquely ergodic systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 2
SP - 197
EP - 206
LA - eng
KW - Ergodic theorem; Uniform cocycle; Hyperbolicity
UR - http://eudml.org/doc/77806
ER -

References

top
  1. [1] G. Andre, S. Aubry, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Israel Phys. Soc.3 (1980) 133-140. Zbl0943.82510MR626837
  2. [2] J. Avron, B. Simon, Singular continuous spectrum for a class of almost periodic Jacobi matrices, Bull. Amer. Math. Soc.6 (1982) 81-85. Zbl0491.47014MR634437
  3. [3] R. Carmona, J. Lacroix, Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, 1990. Zbl0717.60074MR1102675
  4. [4] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer, Berlin, 1987. Zbl0619.47005MR883643
  5. [5] F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynamical Systems20 (2000) 1061-1078. Zbl0965.37013MR1779393
  6. [6] A. Furman, On the multiplicative ergodic theorem for uniquely ergodic ergodic systems, Ann. Inst. Henri Poincaré Probab. Statist.33 (1997) 797-815. Zbl0892.60011MR1484541
  7. [7] H. Furstenberg, B. Weiss, Private communication. 
  8. [8] M.-R. Herman, Construction d'un difféomorphisme minimal d'entropie non nulle, Ergodic Theory Dynamical Systems1 (1981) 65-76. Zbl0469.58008MR627787
  9. [9] M.-R. Herman, Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant the caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2, Comment. Math. Helv58 (1983) 453-502. Zbl0554.58034MR727713
  10. [10] S. Jitomirskaya, Almost everything about the almost-Mathieu operator, II, in: XIth International Congress of Mathematical Physics (Paris, 1994), Internat. Press, Cambridge, MA, 1995, pp. 373-382. Zbl1052.82539MR1370694
  11. [11] S. Jitomirskaya, Metal-insulator transition for the almost-Mathieu operator, Ann. of Math. (2)150 (1999) 1159-1175. Zbl0946.47018MR1740982
  12. [12] O. Knill, The upper Lyapunov exponent of SL(2,R) cocycles: discontinuity and the problem of positivity, in: Lyapunov Exponents (Oberwolfach, 1990), Lecture Notes in Math., vol. 1486, Springer, Berlin, 1991, pp. 86-97. Zbl0746.58050MR1178949
  13. [13] Y. Last, Almost everything about the almost-Mathieu operator, I, in: XIth International Congress of Mathematical Physics (Paris, 1994), Internat. Press, Cambridge, MA, 1995, pp. 373-382. Zbl1052.82539MR1370693
  14. [14] Y. Last, B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum for one-dimensional Schrödinger operators, Invent. Math.135 (1999) 329-367. Zbl0931.34066MR1666767
  15. [15] D. Lenz, Random operators and crossed products, Mathematical Physics Analysis and Geometry2 (1999) 197-220. Zbl0965.47024MR1733886
  16. [16] D. Lenz, Singular spectrum of Lebesgue measure zero for one-dimensional quasicrystals, Comm. Math. Phys.227 (2002) 129-130. Zbl1065.47035MR1903841
  17. [17] D. Lenz, Uniform ergodic theorems on subshifts over a finite alphabet, Ergodic Theory Dynamical Systems22 (2002) 245-255. Zbl1004.37005MR1889573
  18. [18] D. Lenz, Hierarchical structures in Sturmian dynamical systems, Theoret. Comput. Sci.303 (2003) 463-490. Zbl1027.37006MR1990777
  19. [19] D. Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math.50 (1979) 27-58. Zbl0426.58014MR556581
  20. [20] W.A. Veech, Strict ergodicity in zero-dimensional dynamical systems and the Kronecker–Weyl theorem modulo 2, Trans. Amer. Math. Soc.140 (1969) 1-33. Zbl0201.05601
  21. [21] P. Walters, Unique ergodicity and random matrix products, in: Lyapunov Exponents (Bremen, 1984), Lecture Notes in Math., vol. 1186, Springer, Berlin, 1986, pp. 37-55. Zbl0604.60011MR850069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.