Derrida's generalised random energy models 1 : models with finitely many hierarchies

Anton Bovier; Irina Kurkova

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 4, page 439-480
  • ISSN: 0246-0203

How to cite

top

Bovier, Anton, and Kurkova, Irina. "Derrida's generalised random energy models 1 : models with finitely many hierarchies." Annales de l'I.H.P. Probabilités et statistiques 40.4 (2004): 439-480. <http://eudml.org/doc/77819>.

@article{Bovier2004,
author = {Bovier, Anton, Kurkova, Irina},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Gaussian processes; Extreme values; Order statistics; Generalised random energy model; Spin glasses; Poisson cascades; Ghirlanda-Guerra identities},
language = {eng},
number = {4},
pages = {439-480},
publisher = {Elsevier},
title = {Derrida's generalised random energy models 1 : models with finitely many hierarchies},
url = {http://eudml.org/doc/77819},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Bovier, Anton
AU - Kurkova, Irina
TI - Derrida's generalised random energy models 1 : models with finitely many hierarchies
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 4
SP - 439
EP - 480
LA - eng
KW - Gaussian processes; Extreme values; Order statistics; Generalised random energy model; Spin glasses; Poisson cascades; Ghirlanda-Guerra identities
UR - http://eudml.org/doc/77819
ER -

References

top
  1. [1] M Aizenmann, P Contucci, On the stability of the quenched state in mean field spin-glass models, J. Statist. Phys.92 (1998) 765-783. Zbl0963.82045MR1657840
  2. [2] A Bovier, Statistical Mechanics of Disordered Systems, MaPhySto Lecture Notes, vol. 10, Aarhus, 2001. 
  3. [3] A Bovier, V Gayrard, The Hopfield model as a generalised random mean field model, in: Bovier A, Picco P (Eds.), Mathematics of Spin Glasses and Neural Networks, Progress in Probablity, Birkhäuser, Boston, 1997. Zbl0899.60087
  4. [4] A. Bovier, I. Kurkova, Derrida's generalised random energy models 2. Models with continuous hierarchies, Ann. IHP (2002), submitted for publication. Zbl1121.82021
  5. [5] A. Bovier, I. Kurkova, Gibbs measures of Derrida's generalised random energy models and geneologies of Neveu's continuous state branching process, Probab. Theor. Relat. Fields (2003), submitted for publication. 
  6. [6] A Bovier, I Kurkova, M Löwe, Fluctuations of the free energy in the REM and the p-spin SK-models, Ann. Probab.30 (2002) 605-651. Zbl1018.60094MR1905853
  7. [7] M.D Bramson, Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math.31 (1978) 531-581. Zbl0361.60052MR494541
  8. [8] D Capocaccia, M Cassandro, P Picco, On the existence of thermodynamics for the generalised random energy model, J. Statist. Phys.46 (1987) 493-505. MR883541
  9. [9] B Derrida, Random energy model: limit of a family of disordered models, Phys. Rev. Lett.45 (1980) 79-82. MR575260
  10. [10] B Derrida, Random energy model: an exactly solvable model of disordered systems, Phys. Rev. B24 (1981) 2613-2626. Zbl1323.60134MR627810
  11. [11] B Derrida, A generalisation of the random energy model that includes correlations between the energies, J. Phys. Lett.46 (1985) 401-407. 
  12. [12] B Derrida, E Gardner, Solution of the generalised random energy model, J. Phys. C19 (1986) 2253-2274. 
  13. [13] B Derrida, E Gardner, Magnetic properties and function q(x) of the generalised random energy model, J. Phys. C19 (1986) 5783-5798. 
  14. [14] E Gardner, B Derrida, The probability distribution of the partition function of the random energy model, J. Phys. A22 (1989) 1975-1981. MR1004905
  15. [15] D.J Daley, D Vere-Jones, An Introduction to the Theory of Point Processes, Springer, New York, 1988. Zbl0657.60069MR950166
  16. [16] T.C Dorlas, J.R Wedagedera, Large deviations and the random energy model, Int. J. Mod. Phys. B15 (2001) 1-15. Zbl1192.82043MR1811341
  17. [17] T.H Eisele, On a third order phase transition, Comm. Math. Phys.90 (1983) 125-159. Zbl0526.60093MR714615
  18. [18] W Feller, An Introduction to Probability Theory and its Applications, vol. I, Wiley, New York, 1966. Zbl0039.13201MR210154
  19. [19] S Ghirlanda, F Guerra, General properties of the overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity, J. Phys. A31 (1998) 9144-9155. Zbl0953.82037MR1662161
  20. [20] A Galvez, S Martinez, P Picco, Fluctuations in Derrida's random energy and generalised random energy models, J. Statist. Phys.54 (1989) 515-529. MR984264
  21. [21] O Kallenberg, Random Measures, Akademie Verlag, Berlin, 1986. Zbl0345.60032MR854102
  22. [22] M.F. Kratz, P. Picco, On a representation of Gibbs measure for R.E.M., preprint Samos 151, 2002. 
  23. [23] I Kurkova, Temperature dependence of the Gibbs State in the random energy model, J. Stat. Phys.111 (1/2) (2003) 35-56. Zbl1029.82018MR1964264
  24. [24] M.R Leadbetter, G Lindgren, H Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, Berlin, 1983. Zbl0518.60021MR691492
  25. [25] M Ledoux, L Talagrand, Probability in Banach Space, Springer, Berlin, 1991. Zbl0748.60004MR1102015
  26. [26] J. Neveu, A continuous state branching process in relation with the GREM model of spin glass theory, Rapport interne no 267, École Polytechnique, 1992. 
  27. [27] E Olivieri, P Picco, On the existence of thermodynamics for the random energy model, Comm. Math. Phys.96 (1991) 125-144. Zbl0585.60098MR765963
  28. [28] S.I Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, New York, 1987. Zbl0633.60001MR900810
  29. [29] R.T Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970. Zbl0193.18401MR274683
  30. [30] D Ruelle, A mathematical reformulation of Derrida's REM and GREM, Comm. Math. Phys.108 (1987) 225-239. Zbl0617.60100MR875300
  31. [31] D Sherrington, S Kirkpatrick, Solvable model of a spin glass, Phys. Rev. Lett.35 (1972) 1792-1796. 
  32. [32] M Talagrand, Concentration of measure and isoperimetric inequalities in product space, Publ. Math. IHES81 (1995) 73-205. Zbl0864.60013MR1361756
  33. [33] M Talagrand, Rigorous results for the Hopfield model with many patterns, Probab. Theory Related Fields110 (1998) 177-276. Zbl0897.60041MR1609015
  34. [34] M. Talagrand, Mean Field Models for Spin Glasses: a First Course, Lecture Notes of the 2000 École des Probabilités de St. Flour, Lecture Notes in Mathematics, Springer, submitted for publication. Zbl1042.82001MR2009818
  35. [35] M Talagrand, Self organisation in the low-temperature region of a spin glass model, Rev. Math. Phys.15 (2003) 1-78. Zbl1134.82315MR1961185
  36. [36] M Talagrand, Spin Glasses: a Challenge to Mathematicians, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 46, Springer, Berlin, 2003. Zbl1033.82002MR1993891

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.