Quantum stopping times and quasi-left continuity

Stéphane Attal; Agnès Coquio

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 4, page 497-512
  • ISSN: 0246-0203

How to cite

top

Attal, Stéphane, and Coquio, Agnès. "Quantum stopping times and quasi-left continuity." Annales de l'I.H.P. Probabilités et statistiques 40.4 (2004): 497-512. <http://eudml.org/doc/77821>.

@article{Attal2004,
author = {Attal, Stéphane, Coquio, Agnès},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Quantum stopping times; Fock space; Quantum stochastic calculus; Noncommutative stochastic base},
language = {eng},
number = {4},
pages = {497-512},
publisher = {Elsevier},
title = {Quantum stopping times and quasi-left continuity},
url = {http://eudml.org/doc/77821},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Attal, Stéphane
AU - Coquio, Agnès
TI - Quantum stopping times and quasi-left continuity
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 4
SP - 497
EP - 512
LA - eng
KW - Quantum stopping times; Fock space; Quantum stochastic calculus; Noncommutative stochastic base
UR - http://eudml.org/doc/77821
ER -

References

top
  1. [1] D Applebaum, The strong Markov property for fermion Brownian motion, J. Funct. Anal.65 (1986) 273-291. Zbl0583.60076MR820362
  2. [2] S Attal, Extensions of quantum stochastic calculus, in: Attal S, Lindsay J.M (Eds.), Quantum Probability Summer School, Grenoble, World Scientific, 1998. Zbl1077.81518MR2032361
  3. [3] S Attal, K.B Sinha, Stopping semimartingales on Fock space, in: Quantum Probability Communications, vol. X, World Scientific, 1998, pp. 171-186. MR1689480
  4. [4] C Barnett, T Lyons, Stopping non-commutative processes, Math. Proc. Camb. Philos. Soc. (1986) 99-151. Zbl0585.60058MR809510
  5. [5] C Barnett, R.-F Streater, I.F Wilde, The Ito–Clifford integral, J. Funct. Anal.48 (1982) 172-212. Zbl0492.46051
  6. [6] C Barnett, I Wilde, Random times and time projections, Proc. Amer. Math. Soc.110 (2) (1990). Zbl0718.46044MR1021894
  7. [7] C Barnett, I Wilde, Random times, predictable processes and stochastic integration in finite von Neumann algebra, Proc. London Math. Soc.3 (1993) 355-383. Zbl0793.46041MR1226606
  8. [8] C Barnett, B Thakrar, Times projections in a von Neumann algebra, J. Operator Theory18 (1987) 19-31. Zbl0657.46043MR912810
  9. [9] R.L Hudson, The strong Markov property for canonical Wiener process, J. Funct. Anal.34 (1979) 266-281. Zbl0424.46048MR552705
  10. [10] R.L Hudson, J.M Lindsay, A non-commutative martingale representation theorem for non-Fock quantum Brownian motion, J. Funct. Anal.61 (1985) 202-221. Zbl0577.60055MR786622
  11. [11] R.L Hudson, K.R Parthasarathy, Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys.93 (1984) 301-323. Zbl0546.60058MR745686
  12. [12] J.M Lindsay, Fermion martingales, Probab. Theory Related Fields71 (1986) 307-320. Zbl0578.60063MR816708
  13. [13] P.-A Meyer, Quantum Probability for Probabilists, Lecture Notes in Math., vol. 1538, Springer, 1993. Zbl0773.60098MR1222649
  14. [14] K.R Parthasarathy, K.B Sinha, Stop times in Fock space stochastic calculus, Probab. Theory Related Fields75 (1987) 317-349. Zbl0599.60044MR890283

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.