Quantum stopping times and quasi-left continuity
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 4, page 497-512
- ISSN: 0246-0203
Access Full Article
topHow to cite
topAttal, Stéphane, and Coquio, Agnès. "Quantum stopping times and quasi-left continuity." Annales de l'I.H.P. Probabilités et statistiques 40.4 (2004): 497-512. <http://eudml.org/doc/77821>.
@article{Attal2004,
author = {Attal, Stéphane, Coquio, Agnès},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Quantum stopping times; Fock space; Quantum stochastic calculus; Noncommutative stochastic base},
language = {eng},
number = {4},
pages = {497-512},
publisher = {Elsevier},
title = {Quantum stopping times and quasi-left continuity},
url = {http://eudml.org/doc/77821},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Attal, Stéphane
AU - Coquio, Agnès
TI - Quantum stopping times and quasi-left continuity
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 4
SP - 497
EP - 512
LA - eng
KW - Quantum stopping times; Fock space; Quantum stochastic calculus; Noncommutative stochastic base
UR - http://eudml.org/doc/77821
ER -
References
top- [1] D Applebaum, The strong Markov property for fermion Brownian motion, J. Funct. Anal.65 (1986) 273-291. Zbl0583.60076MR820362
- [2] S Attal, Extensions of quantum stochastic calculus, in: Attal S, Lindsay J.M (Eds.), Quantum Probability Summer School, Grenoble, World Scientific, 1998. Zbl1077.81518MR2032361
- [3] S Attal, K.B Sinha, Stopping semimartingales on Fock space, in: Quantum Probability Communications, vol. X, World Scientific, 1998, pp. 171-186. MR1689480
- [4] C Barnett, T Lyons, Stopping non-commutative processes, Math. Proc. Camb. Philos. Soc. (1986) 99-151. Zbl0585.60058MR809510
- [5] C Barnett, R.-F Streater, I.F Wilde, The Ito–Clifford integral, J. Funct. Anal.48 (1982) 172-212. Zbl0492.46051
- [6] C Barnett, I Wilde, Random times and time projections, Proc. Amer. Math. Soc.110 (2) (1990). Zbl0718.46044MR1021894
- [7] C Barnett, I Wilde, Random times, predictable processes and stochastic integration in finite von Neumann algebra, Proc. London Math. Soc.3 (1993) 355-383. Zbl0793.46041MR1226606
- [8] C Barnett, B Thakrar, Times projections in a von Neumann algebra, J. Operator Theory18 (1987) 19-31. Zbl0657.46043MR912810
- [9] R.L Hudson, The strong Markov property for canonical Wiener process, J. Funct. Anal.34 (1979) 266-281. Zbl0424.46048MR552705
- [10] R.L Hudson, J.M Lindsay, A non-commutative martingale representation theorem for non-Fock quantum Brownian motion, J. Funct. Anal.61 (1985) 202-221. Zbl0577.60055MR786622
- [11] R.L Hudson, K.R Parthasarathy, Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys.93 (1984) 301-323. Zbl0546.60058MR745686
- [12] J.M Lindsay, Fermion martingales, Probab. Theory Related Fields71 (1986) 307-320. Zbl0578.60063MR816708
- [13] P.-A Meyer, Quantum Probability for Probabilists, Lecture Notes in Math., vol. 1538, Springer, 1993. Zbl0773.60098MR1222649
- [14] K.R Parthasarathy, K.B Sinha, Stop times in Fock space stochastic calculus, Probab. Theory Related Fields75 (1987) 317-349. Zbl0599.60044MR890283
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.