Reversible distributions of multi-allelic Gillespie–Sato diffusion models
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 5, page 569-597
- ISSN: 0246-0203
Access Full Article
topHow to cite
topHanda, Kenji. "Reversible distributions of multi-allelic Gillespie–Sato diffusion models." Annales de l'I.H.P. Probabilités et statistiques 40.5 (2004): 569-597. <http://eudml.org/doc/77825>.
@article{Handa2004,
author = {Handa, Kenji},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {population genetics; Gillespie-Sato diffusion model; reversibility; quasi- invariance; Dirichlet distribution},
language = {eng},
number = {5},
pages = {569-597},
publisher = {Elsevier},
title = {Reversible distributions of multi-allelic Gillespie–Sato diffusion models},
url = {http://eudml.org/doc/77825},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Handa, Kenji
TI - Reversible distributions of multi-allelic Gillespie–Sato diffusion models
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 5
SP - 569
EP - 597
LA - eng
KW - population genetics; Gillespie-Sato diffusion model; reversibility; quasi- invariance; Dirichlet distribution
UR - http://eudml.org/doc/77825
ER -
References
top- [1] R. Bürger, The Mathematical Theory of Selection, Recombination, and Mutation, Wiley, Chichester, 2000. Zbl0959.92018MR1885085
- [2] D.M. Cifarelli, E. Regazzini, Distribution functions of means of a Dirichlet process, Ann. Statist.18 (1990) 429-442, Correction , Ann. Statist.22 (1994) 1633-1634. Zbl0817.62004MR1041402
- [3] S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986. Zbl0592.60049MR838085
- [4] S.N. Ethier, T.G. Kurtz, Fleming–Viot processes in population genetics, SIAM J. Contr. Optim.31 (1993) 345-386. Zbl0774.60045
- [5] W.J. Ewens, Mathematical Population Genetics, Springer, Berlin, 1979. Zbl0422.92011MR554616
- [6] M. Fukushima, D. Stroock, Reversibility of solutions to martingale problems, in: Adv. Math. Suppl. Stud., vol. 9, Academic Press, Orlando, 1986, pp. 107-123. Zbl0613.60066MR875449
- [7] J.H. Gillespie, Natural selection for within-generation variance in offspring number, Genetics76 (1974) 601-606. MR395917
- [8] A. Guionnet, B. Zegarlinski, Lectures on logarithmic Sobolev inequalities, in: Séminaire de Probabilités XXXVI, Lecture Notes in Math., vol. 1801, Springer, Berlin, 2003, pp. 1-134. Zbl1125.60111MR1971582
- [9] P.R. Halmos, Measure Theory, Graduate Texts in Mathematics, vol. 18, Springer, New York, 1974. Zbl0283.28001
- [10] K. Handa, Quasi-invariant measures and their characterization by conditional probabilities, Bull. Sci. Math.125 (2001) 583-604. Zbl0996.28006MR1869992
- [11] K. Handa, Quasi-invariance and reversibility in the Fleming–Viot process, Probab. Theory Related Fields122 (2002) 545-566. Zbl0995.60048
- [12] R. Holley, D. Stroock, Simulated annealing via Sobolev inequalities, Comm. Math. Phys.115 (1988) 553-569. Zbl0643.60092MR933455
- [13] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, Amsterdam/Tokyo, 1989. Zbl0684.60040MR1011252
- [14] A.N. Kolmogoroff, Zur Umkehrbarkeit der statistischen Naturgesetze, Math. Ann.113 (1937) 766-772. Zbl0015.26004MR1513121
- [15] B. Levikson, The age distribution of Markov processes, J. Appl. Probab.14 (1977) 492-506. Zbl0389.60049MR465273
- [16] Z. Li, T. Shiga, L. Yao, A reversibility problem for Fleming–Viot processes, Elect. Comm. Probab.4 (1999) 71-82. Zbl0926.60043
- [17] M. Nagasawa, T. Maruyama, An application of time reversal of Markov processes to a problem of population genetics, Adv. Appl. Probab.11 (1979) 457-478. Zbl0406.60070MR533054
- [18] E. Nelson, The adjoint Markoff process, Duke Math. J.25 (1958) 671-690. Zbl0084.13402MR101555
- [19] K. Sato, Convergence to a diffusion of a multi-allelic model in population genetics, Adv. Appl. Probab.10 (1978) 538-562. Zbl0397.60067MR499213
- [20] S. Sawyer, On the past history of an allele now known to have frequency p, J. Appl. Probab.14 (1977) 439-450. Zbl0373.92013MR504055
- [21] T. Shiga, Diffusion processes in population genetics, J. Math. Kyoto Univ.21 (1981) 133-151. Zbl0455.92005MR606316
- [22] T. Shiga, A certain class of infinite-dimensional diffusion processes arising in population genetics, J. Math. Soc. Japan39 (1987) 17-25. Zbl0625.60095MR867984
- [23] T. Shiga, Multi-allelic Gillespie–Sato diffusion models and their extension to infinite allelic ones, in: Kimura M., Kallianpur G., Hida T. (Eds.), Stochastic Methods in Biology (Nagoya, 1985), Lecture Notes in Biomath., vol. 70, Springer, Berlin, 1987, pp. 87-99. Zbl0639.92009
- [24] T. Shiga, A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes, J. Math. Kyoto Univ.30 (1990) 245-279. Zbl0751.60044MR1068791
- [25] W. Stannat, On the validity of the log-Sobolev inequality for symmetric Fleming–Viot operators, Ann. Probab.28 (2000) 667-684. Zbl1044.60037
- [26] N. Tsilevich, A. Vershik, M. Yor, Distinguished properties of the gamma process, and related topics, Prépublication du Laboratoire de Probabilités et Moèles Aléatoires No. 575, 2000, available at , http://xxx.lanl.gov/ps/math.PR/0005287. Zbl0990.60053
- [27] N. Tsilevich, A. Vershik, M. Yor, An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process, J. Funct. Anal.185 (2001) 274-296. Zbl0990.60053MR1853759
- [28] G.A. Watterson, Reversibility and the age of an allele, I, Moran's infinitely many neutral alleles model, Theoret. Population Biology10 (1976) 239-253. Zbl0351.92015MR475994
- [29] G.A. Watterson, Reversibility and the age of an allele, II, Two-allele models, with selection and mutation, Theoret. Population Biology12 (1977) 179-196. Zbl0444.92007MR475995
- [30] S. Wright, Adaptation and selection, in: Jepson G.L., Mayr E., Simpson G.G. (Eds.), Genetics, Paleontology, and Evolution, Princeton University, Princeton, NJ, 1949, pp. 365-389.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.