Reversible distributions of multi-allelic Gillespie–Sato diffusion models

Kenji Handa

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 5, page 569-597
  • ISSN: 0246-0203

How to cite

top

Handa, Kenji. "Reversible distributions of multi-allelic Gillespie–Sato diffusion models." Annales de l'I.H.P. Probabilités et statistiques 40.5 (2004): 569-597. <http://eudml.org/doc/77825>.

@article{Handa2004,
author = {Handa, Kenji},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {population genetics; Gillespie-Sato diffusion model; reversibility; quasi- invariance; Dirichlet distribution},
language = {eng},
number = {5},
pages = {569-597},
publisher = {Elsevier},
title = {Reversible distributions of multi-allelic Gillespie–Sato diffusion models},
url = {http://eudml.org/doc/77825},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Handa, Kenji
TI - Reversible distributions of multi-allelic Gillespie–Sato diffusion models
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 5
SP - 569
EP - 597
LA - eng
KW - population genetics; Gillespie-Sato diffusion model; reversibility; quasi- invariance; Dirichlet distribution
UR - http://eudml.org/doc/77825
ER -

References

top
  1. [1] R. Bürger, The Mathematical Theory of Selection, Recombination, and Mutation, Wiley, Chichester, 2000. Zbl0959.92018MR1885085
  2. [2] D.M. Cifarelli, E. Regazzini, Distribution functions of means of a Dirichlet process, Ann. Statist.18 (1990) 429-442, Correction , Ann. Statist.22 (1994) 1633-1634. Zbl0817.62004MR1041402
  3. [3] S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986. Zbl0592.60049MR838085
  4. [4] S.N. Ethier, T.G. Kurtz, Fleming–Viot processes in population genetics, SIAM J. Contr. Optim.31 (1993) 345-386. Zbl0774.60045
  5. [5] W.J. Ewens, Mathematical Population Genetics, Springer, Berlin, 1979. Zbl0422.92011MR554616
  6. [6] M. Fukushima, D. Stroock, Reversibility of solutions to martingale problems, in: Adv. Math. Suppl. Stud., vol. 9, Academic Press, Orlando, 1986, pp. 107-123. Zbl0613.60066MR875449
  7. [7] J.H. Gillespie, Natural selection for within-generation variance in offspring number, Genetics76 (1974) 601-606. MR395917
  8. [8] A. Guionnet, B. Zegarlinski, Lectures on logarithmic Sobolev inequalities, in: Séminaire de Probabilités XXXVI, Lecture Notes in Math., vol. 1801, Springer, Berlin, 2003, pp. 1-134. Zbl1125.60111MR1971582
  9. [9] P.R. Halmos, Measure Theory, Graduate Texts in Mathematics, vol. 18, Springer, New York, 1974. Zbl0283.28001
  10. [10] K. Handa, Quasi-invariant measures and their characterization by conditional probabilities, Bull. Sci. Math.125 (2001) 583-604. Zbl0996.28006MR1869992
  11. [11] K. Handa, Quasi-invariance and reversibility in the Fleming–Viot process, Probab. Theory Related Fields122 (2002) 545-566. Zbl0995.60048
  12. [12] R. Holley, D. Stroock, Simulated annealing via Sobolev inequalities, Comm. Math. Phys.115 (1988) 553-569. Zbl0643.60092MR933455
  13. [13] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, Amsterdam/Tokyo, 1989. Zbl0684.60040MR1011252
  14. [14] A.N. Kolmogoroff, Zur Umkehrbarkeit der statistischen Naturgesetze, Math. Ann.113 (1937) 766-772. Zbl0015.26004MR1513121
  15. [15] B. Levikson, The age distribution of Markov processes, J. Appl. Probab.14 (1977) 492-506. Zbl0389.60049MR465273
  16. [16] Z. Li, T. Shiga, L. Yao, A reversibility problem for Fleming–Viot processes, Elect. Comm. Probab.4 (1999) 71-82. Zbl0926.60043
  17. [17] M. Nagasawa, T. Maruyama, An application of time reversal of Markov processes to a problem of population genetics, Adv. Appl. Probab.11 (1979) 457-478. Zbl0406.60070MR533054
  18. [18] E. Nelson, The adjoint Markoff process, Duke Math. J.25 (1958) 671-690. Zbl0084.13402MR101555
  19. [19] K. Sato, Convergence to a diffusion of a multi-allelic model in population genetics, Adv. Appl. Probab.10 (1978) 538-562. Zbl0397.60067MR499213
  20. [20] S. Sawyer, On the past history of an allele now known to have frequency p, J. Appl. Probab.14 (1977) 439-450. Zbl0373.92013MR504055
  21. [21] T. Shiga, Diffusion processes in population genetics, J. Math. Kyoto Univ.21 (1981) 133-151. Zbl0455.92005MR606316
  22. [22] T. Shiga, A certain class of infinite-dimensional diffusion processes arising in population genetics, J. Math. Soc. Japan39 (1987) 17-25. Zbl0625.60095MR867984
  23. [23] T. Shiga, Multi-allelic Gillespie–Sato diffusion models and their extension to infinite allelic ones, in: Kimura M., Kallianpur G., Hida T. (Eds.), Stochastic Methods in Biology (Nagoya, 1985), Lecture Notes in Biomath., vol. 70, Springer, Berlin, 1987, pp. 87-99. Zbl0639.92009
  24. [24] T. Shiga, A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes, J. Math. Kyoto Univ.30 (1990) 245-279. Zbl0751.60044MR1068791
  25. [25] W. Stannat, On the validity of the log-Sobolev inequality for symmetric Fleming–Viot operators, Ann. Probab.28 (2000) 667-684. Zbl1044.60037
  26. [26] N. Tsilevich, A. Vershik, M. Yor, Distinguished properties of the gamma process, and related topics, Prépublication du Laboratoire de Probabilités et Moèles Aléatoires No. 575, 2000, available at , http://xxx.lanl.gov/ps/math.PR/0005287. Zbl0990.60053
  27. [27] N. Tsilevich, A. Vershik, M. Yor, An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process, J. Funct. Anal.185 (2001) 274-296. Zbl0990.60053MR1853759
  28. [28] G.A. Watterson, Reversibility and the age of an allele, I, Moran's infinitely many neutral alleles model, Theoret. Population Biology10 (1976) 239-253. Zbl0351.92015MR475994
  29. [29] G.A. Watterson, Reversibility and the age of an allele, II, Two-allele models, with selection and mutation, Theoret. Population Biology12 (1977) 179-196. Zbl0444.92007MR475995
  30. [30] S. Wright, Adaptation and selection, in: Jepson G.L., Mayr E., Simpson G.G. (Eds.), Genetics, Paleontology, and Evolution, Princeton University, Princeton, NJ, 1949, pp. 365-389. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.