A general Choquet–Deny theorem for nilpotent groups

Albert Raugi

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 6, page 677-683
  • ISSN: 0246-0203

How to cite

top

Raugi, Albert. "A general Choquet–Deny theorem for nilpotent groups." Annales de l'I.H.P. Probabilités et statistiques 40.6 (2004): 677-683. <http://eudml.org/doc/77829>.

@article{Raugi2004,
author = {Raugi, Albert},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {harmonic function; nilpotent group},
language = {eng},
number = {6},
pages = {677-683},
publisher = {Elsevier},
title = {A general Choquet–Deny theorem for nilpotent groups},
url = {http://eudml.org/doc/77829},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Raugi, Albert
TI - A general Choquet–Deny theorem for nilpotent groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 6
SP - 677
EP - 683
LA - eng
KW - harmonic function; nilpotent group
UR - http://eudml.org/doc/77829
ER -

References

top
  1. [1] R. Azencott, Espaces de Poisson des groupes localement compacts, in: Lecture Notes in Math, vol. 148, Springer, Berlin, 1970. Zbl0208.15302MR501376
  2. [2] A. Avez, Théorème de Choquet–Deny pour les groupes à croissance non exponentielle, CRAS Sér. A279 (1974) 25-28. Zbl0292.60100
  3. [3] D. Blackwell, On transient Markov processes with a countable number of states and stationary transition probabilities, Ann. Math. Stat26 (1955) 654-658. Zbl0066.11303MR75479
  4. [4] G. Choquet, J. Deny, Sur l'équation de convolution μ=μ∗σ, CRAS Sér. A250 (1960) 799-801. Zbl0093.12802
  5. [5] Y. Derriennic, Entropie, théorèmes limite et marches aléatoires, in: Lecture Notes in Math, vol. 1210, Springer, Berlin, 1986, pp. 241-284. Zbl0612.60005MR879010
  6. [6] E.B. Dynkin, M.B. Malyutov, Random walks on groups with a finite number of generators, Soviet Math. Dokl2 (1961) 399-402. Zbl0214.44101
  7. [7] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin. Zbl0874.49001
  8. [8] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. Math., Ser. 277 (1963) 335-386. Zbl0192.12704MR146298
  9. [9] Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France101 (1973) 333-379. Zbl0294.43003MR369608
  10. [10] W. Jaworski, Random walks on almost connected locally compact groups: boundary and convergence, J. Anal. Math74 (1998) 235-273. Zbl0908.60071MR1631666
  11. [11] V.A. Kaimanovich, A.M. Vershik, Random walks on discrete groups. Boundary and entropy, Ann. Probab11 (1983) 457-490. Zbl0641.60009MR704539
  12. [12] V.A. Kaimanovich, Poisson Boundaries of Random Walks on Discrete Solvable Groups, Plenum, New York, 1991, pp. 205–238. Zbl0823.60006
  13. [13] F. Ledrappier, Poisson boundaries of discrete groups of matrices, CRAS Sér. I2978 (16) (1984) 393-396. Zbl0563.60009MR748930
  14. [14] J. Neveu, Bases mathématiques du calcul des probabilités, Masson, 1970. Zbl0137.11203MR272004
  15. [15] A. Raugi, Périodes des fonctions harmoniques bornées, 1978. MR602525
  16. [16] A. Raugi, Fonctions harmoniques et théorèmes limites pour les marches aléatoires sur les groupes, Bull. Soc. Math. France54 (1977) 5-118. Zbl0389.60003MR517392
  17. [17] D. Revuz, Markov Chains, North-Holland, Amsterdam, 1975. Zbl0539.60073MR415773

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.