A general Choquet–Deny theorem for nilpotent groups
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 6, page 677-683
- ISSN: 0246-0203
Access Full Article
topHow to cite
topRaugi, Albert. "A general Choquet–Deny theorem for nilpotent groups." Annales de l'I.H.P. Probabilités et statistiques 40.6 (2004): 677-683. <http://eudml.org/doc/77829>.
@article{Raugi2004,
author = {Raugi, Albert},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {harmonic function; nilpotent group},
language = {eng},
number = {6},
pages = {677-683},
publisher = {Elsevier},
title = {A general Choquet–Deny theorem for nilpotent groups},
url = {http://eudml.org/doc/77829},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Raugi, Albert
TI - A general Choquet–Deny theorem for nilpotent groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 6
SP - 677
EP - 683
LA - eng
KW - harmonic function; nilpotent group
UR - http://eudml.org/doc/77829
ER -
References
top- [1] R. Azencott, Espaces de Poisson des groupes localement compacts, in: Lecture Notes in Math, vol. 148, Springer, Berlin, 1970. Zbl0208.15302MR501376
- [2] A. Avez, Théorème de Choquet–Deny pour les groupes à croissance non exponentielle, CRAS Sér. A279 (1974) 25-28. Zbl0292.60100
- [3] D. Blackwell, On transient Markov processes with a countable number of states and stationary transition probabilities, Ann. Math. Stat26 (1955) 654-658. Zbl0066.11303MR75479
- [4] G. Choquet, J. Deny, Sur l'équation de convolution μ=μ∗σ, CRAS Sér. A250 (1960) 799-801. Zbl0093.12802
- [5] Y. Derriennic, Entropie, théorèmes limite et marches aléatoires, in: Lecture Notes in Math, vol. 1210, Springer, Berlin, 1986, pp. 241-284. Zbl0612.60005MR879010
- [6] E.B. Dynkin, M.B. Malyutov, Random walks on groups with a finite number of generators, Soviet Math. Dokl2 (1961) 399-402. Zbl0214.44101
- [7] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin. Zbl0874.49001
- [8] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. Math., Ser. 277 (1963) 335-386. Zbl0192.12704MR146298
- [9] Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France101 (1973) 333-379. Zbl0294.43003MR369608
- [10] W. Jaworski, Random walks on almost connected locally compact groups: boundary and convergence, J. Anal. Math74 (1998) 235-273. Zbl0908.60071MR1631666
- [11] V.A. Kaimanovich, A.M. Vershik, Random walks on discrete groups. Boundary and entropy, Ann. Probab11 (1983) 457-490. Zbl0641.60009MR704539
- [12] V.A. Kaimanovich, Poisson Boundaries of Random Walks on Discrete Solvable Groups, Plenum, New York, 1991, pp. 205–238. Zbl0823.60006
- [13] F. Ledrappier, Poisson boundaries of discrete groups of matrices, CRAS Sér. I2978 (16) (1984) 393-396. Zbl0563.60009MR748930
- [14] J. Neveu, Bases mathématiques du calcul des probabilités, Masson, 1970. Zbl0137.11203MR272004
- [15] A. Raugi, Périodes des fonctions harmoniques bornées, 1978. MR602525
- [16] A. Raugi, Fonctions harmoniques et théorèmes limites pour les marches aléatoires sur les groupes, Bull. Soc. Math. France54 (1977) 5-118. Zbl0389.60003MR517392
- [17] D. Revuz, Markov Chains, North-Holland, Amsterdam, 1975. Zbl0539.60073MR415773
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.