Large deviations for invariant measures of stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term

Sandra Cerrai; Michael Röckner

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 1, page 69-105
  • ISSN: 0246-0203

How to cite

top

Cerrai, Sandra, and Röckner, Michael. "Large deviations for invariant measures of stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term." Annales de l'I.H.P. Probabilités et statistiques 41.1 (2005): 69-105. <http://eudml.org/doc/77838>.

@article{Cerrai2005,
author = {Cerrai, Sandra, Röckner, Michael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviations principle; stochastic partial differential equations; invariant measures},
language = {eng},
number = {1},
pages = {69-105},
publisher = {Elsevier},
title = {Large deviations for invariant measures of stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term},
url = {http://eudml.org/doc/77838},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Cerrai, Sandra
AU - Röckner, Michael
TI - Large deviations for invariant measures of stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 1
SP - 69
EP - 105
LA - eng
KW - large deviations principle; stochastic partial differential equations; invariant measures
UR - http://eudml.org/doc/77838
ER -

References

top
  1. [1] S. Cerrai, Second Order PDE's in Finite and Infinite Dimension. A Probabilistic Approach, Lecture Notes in Mathematics, vol. 1762, Springer-Verlag, Berlin, 2001. Zbl0983.60004MR1840644
  2. [2] S. Cerrai, Stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Related Fields125 (2003) 271-304. Zbl1027.60064MR1961346
  3. [3] S. Cerrai, M. Röckner, Large deviations for stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term, Ann. Probab.32 (2004) 1-40. Zbl1054.60065MR2044675
  4. [4] Ph. Clément, G. Sweers, Uniform anti-maximum principles, J. Differential Equations164 (2000) 118-154. Zbl0964.35033MR1761420
  5. [5] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989. Zbl0699.35006MR990239
  6. [6] I. Daw, Principe de grandes déviationes pour une mesure invariante associée à un processus de diffusion en dimension infinie, Ph.D. Thesis, University of Rouen (1998). 
  7. [7] M.D. Donsker, S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I, Comm. Pure Appl. Math.28 (1975) 1-47. Zbl0323.60069MR386024
  8. [8] W.G. Faris, G. Jona-Lasinio, Large fluctuation for a non linear heat equation with noise, J. Phys. A15 (1982) 3025-3055. Zbl0496.60060MR684578
  9. [9] M.I. Freidlin, Random perturbations of reaction–diffusion equations: the quasi deterministic approximation, Trans. Amer. Math. Soc.305 (1988) 665-697. Zbl0673.35049MR924775
  10. [10] M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, Berlin, 1984. Zbl0922.60006MR722136
  11. [11] S. Peszat, Large deviation estimates for stochastic evolution equations, Probab. Theory Related Fields98 (1994) 113-136. Zbl0792.60057MR1254827
  12. [12] T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, 1996. Zbl0873.35001MR1419319
  13. [13] R. Sowers, Large deviations for a reaction–diffusion equation with non-Gaussian perturbation, Ann. Probab.20 (1992) 504-537. Zbl0749.60059MR1143433
  14. [14] R. Sowers, Large deviations for the invariant measure of a reaction–diffusion equation with non-Gaussian perturbations, Probab. Theory Related Fields92 (1992) 393-421. Zbl0767.60025MR1165518
  15. [15] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. Zbl0387.46032MR503903
  16. [16] S.R.S. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Appl. Math.22 (1969) 261-286. Zbl0147.15503MR203230

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.