Large deviations for invariant measures of stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term
Sandra Cerrai; Michael Röckner
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 1, page 69-105
- ISSN: 0246-0203
Access Full Article
topHow to cite
topCerrai, Sandra, and Röckner, Michael. "Large deviations for invariant measures of stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term." Annales de l'I.H.P. Probabilités et statistiques 41.1 (2005): 69-105. <http://eudml.org/doc/77838>.
@article{Cerrai2005,
author = {Cerrai, Sandra, Röckner, Michael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviations principle; stochastic partial differential equations; invariant measures},
language = {eng},
number = {1},
pages = {69-105},
publisher = {Elsevier},
title = {Large deviations for invariant measures of stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term},
url = {http://eudml.org/doc/77838},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Cerrai, Sandra
AU - Röckner, Michael
TI - Large deviations for invariant measures of stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 1
SP - 69
EP - 105
LA - eng
KW - large deviations principle; stochastic partial differential equations; invariant measures
UR - http://eudml.org/doc/77838
ER -
References
top- [1] S. Cerrai, Second Order PDE's in Finite and Infinite Dimension. A Probabilistic Approach, Lecture Notes in Mathematics, vol. 1762, Springer-Verlag, Berlin, 2001. Zbl0983.60004MR1840644
- [2] S. Cerrai, Stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Related Fields125 (2003) 271-304. Zbl1027.60064MR1961346
- [3] S. Cerrai, M. Röckner, Large deviations for stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term, Ann. Probab.32 (2004) 1-40. Zbl1054.60065MR2044675
- [4] Ph. Clément, G. Sweers, Uniform anti-maximum principles, J. Differential Equations164 (2000) 118-154. Zbl0964.35033MR1761420
- [5] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989. Zbl0699.35006MR990239
- [6] I. Daw, Principe de grandes déviationes pour une mesure invariante associée à un processus de diffusion en dimension infinie, Ph.D. Thesis, University of Rouen (1998).
- [7] M.D. Donsker, S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I, Comm. Pure Appl. Math.28 (1975) 1-47. Zbl0323.60069MR386024
- [8] W.G. Faris, G. Jona-Lasinio, Large fluctuation for a non linear heat equation with noise, J. Phys. A15 (1982) 3025-3055. Zbl0496.60060MR684578
- [9] M.I. Freidlin, Random perturbations of reaction–diffusion equations: the quasi deterministic approximation, Trans. Amer. Math. Soc.305 (1988) 665-697. Zbl0673.35049MR924775
- [10] M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, Berlin, 1984. Zbl0922.60006MR722136
- [11] S. Peszat, Large deviation estimates for stochastic evolution equations, Probab. Theory Related Fields98 (1994) 113-136. Zbl0792.60057MR1254827
- [12] T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, 1996. Zbl0873.35001MR1419319
- [13] R. Sowers, Large deviations for a reaction–diffusion equation with non-Gaussian perturbation, Ann. Probab.20 (1992) 504-537. Zbl0749.60059MR1143433
- [14] R. Sowers, Large deviations for the invariant measure of a reaction–diffusion equation with non-Gaussian perturbations, Probab. Theory Related Fields92 (1992) 393-421. Zbl0767.60025MR1165518
- [15] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. Zbl0387.46032MR503903
- [16] S.R.S. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Appl. Math.22 (1969) 261-286. Zbl0147.15503MR203230
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.