Stochastic flows associated to coalescent processes II : stochastic differential equations

Jean Bertoin; Jean-François Le Gall

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 3, page 307-333
  • ISSN: 0246-0203

How to cite

top

Bertoin, Jean, and Le Gall, Jean-François. "Stochastic flows associated to coalescent processes II : stochastic differential equations." Annales de l'I.H.P. Probabilités et statistiques 41.3 (2005): 307-333. <http://eudml.org/doc/77847>.

@article{Bertoin2005,
author = {Bertoin, Jean, Le Gall, Jean-François},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Flow; Coalescence; Bridge; Stochastic differential equation},
language = {eng},
number = {3},
pages = {307-333},
publisher = {Elsevier},
title = {Stochastic flows associated to coalescent processes II : stochastic differential equations},
url = {http://eudml.org/doc/77847},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Bertoin, Jean
AU - Le Gall, Jean-François
TI - Stochastic flows associated to coalescent processes II : stochastic differential equations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 3
SP - 307
EP - 333
LA - eng
KW - Flow; Coalescence; Bridge; Stochastic differential equation
UR - http://eudml.org/doc/77847
ER -

References

top
  1. [1] J. Bertoin, J.F. Le Gall, Stochastic flows associated to coalescent processes, Probab. Theory Related Fields126 (2003) 261-288. Zbl1023.92018MR1990057
  2. [2] A.M. Etheridge, An Introduction to Superprocesses, Univ. Lecture Ser., vol. 20, Amer. Math. Soc., Providence, 2000. Zbl0971.60053MR1779100
  3. [3] S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986. Zbl0592.60049MR838085
  4. [4] T.E. Harris, Coalescing and noncoalescing stochastic flows in R 1 , Stochastic Process. Appl.17 (1984) 187-210. Zbl0536.60016MR751202
  5. [5] J. Jacod, Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Math., vol. 714, Springer, Berlin, 1979. Zbl0414.60053MR542115
  6. [6] O. Kallenberg, Canonical representations and convergence criteria for processes with interchangeable increments, Z. Wahrscheinlichkeitstheorie Verw. Gebiete27 (1973) 23-36. Zbl0253.60060MR394842
  7. [7] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1997. Zbl0638.60065MR917065
  8. [8] J.F.C. Kingman, The coalescent, Stochastic Process. Appl.13 (1982) 235-248. Zbl0491.60076MR671034
  9. [9] Y. Le Jan, O. Raimond, Flows, coalescence and noise, Ann. Probab.32 (2004) 1247-1315. Zbl1065.60066MR2060298
  10. [10] P.A. Meyer, Un cours sur les intégrales stochastiques, in: Séminaire de Probabilités X, Lecture Notes Math., vol. 511, Springer, Berlin, 1976. Zbl0374.60070MR501332
  11. [11] M. Möhle, S. Sagitov, A classification of coalescent processes for haploid exchangeable population models, Ann. Probab.29 (2001) 1547-1562. Zbl1013.92029MR1880231
  12. [12] J. Pitman, Coalescents with multiple collisions, Ann. Probab.27 (1999) 1870-1902. Zbl0963.60079MR1742892
  13. [13] S. Sagitov, The general coalescent with asynchronous mergers of ancester lines, J. Appl. Probab.36 (1999) 1116-1125. Zbl0962.92026MR1742154
  14. [14] J. Schweinsberg, Coalescents with simultaneous multiple collisions, Electr. J. Probab.5–12 (2000) 1-50, http://www.math.washington.edu/~ejpecp/ejp5contents.html. Zbl0959.60065MR1781024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.