Stochastic flows associated to coalescent processes II : stochastic differential equations
Jean Bertoin; Jean-François Le Gall
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 3, page 307-333
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBertoin, Jean, and Le Gall, Jean-François. "Stochastic flows associated to coalescent processes II : stochastic differential equations." Annales de l'I.H.P. Probabilités et statistiques 41.3 (2005): 307-333. <http://eudml.org/doc/77847>.
@article{Bertoin2005,
author = {Bertoin, Jean, Le Gall, Jean-François},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Flow; Coalescence; Bridge; Stochastic differential equation},
language = {eng},
number = {3},
pages = {307-333},
publisher = {Elsevier},
title = {Stochastic flows associated to coalescent processes II : stochastic differential equations},
url = {http://eudml.org/doc/77847},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Bertoin, Jean
AU - Le Gall, Jean-François
TI - Stochastic flows associated to coalescent processes II : stochastic differential equations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 3
SP - 307
EP - 333
LA - eng
KW - Flow; Coalescence; Bridge; Stochastic differential equation
UR - http://eudml.org/doc/77847
ER -
References
top- [1] J. Bertoin, J.F. Le Gall, Stochastic flows associated to coalescent processes, Probab. Theory Related Fields126 (2003) 261-288. Zbl1023.92018MR1990057
- [2] A.M. Etheridge, An Introduction to Superprocesses, Univ. Lecture Ser., vol. 20, Amer. Math. Soc., Providence, 2000. Zbl0971.60053MR1779100
- [3] S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986. Zbl0592.60049MR838085
- [4] T.E. Harris, Coalescing and noncoalescing stochastic flows in , Stochastic Process. Appl.17 (1984) 187-210. Zbl0536.60016MR751202
- [5] J. Jacod, Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Math., vol. 714, Springer, Berlin, 1979. Zbl0414.60053MR542115
- [6] O. Kallenberg, Canonical representations and convergence criteria for processes with interchangeable increments, Z. Wahrscheinlichkeitstheorie Verw. Gebiete27 (1973) 23-36. Zbl0253.60060MR394842
- [7] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1997. Zbl0638.60065MR917065
- [8] J.F.C. Kingman, The coalescent, Stochastic Process. Appl.13 (1982) 235-248. Zbl0491.60076MR671034
- [9] Y. Le Jan, O. Raimond, Flows, coalescence and noise, Ann. Probab.32 (2004) 1247-1315. Zbl1065.60066MR2060298
- [10] P.A. Meyer, Un cours sur les intégrales stochastiques, in: Séminaire de Probabilités X, Lecture Notes Math., vol. 511, Springer, Berlin, 1976. Zbl0374.60070MR501332
- [11] M. Möhle, S. Sagitov, A classification of coalescent processes for haploid exchangeable population models, Ann. Probab.29 (2001) 1547-1562. Zbl1013.92029MR1880231
- [12] J. Pitman, Coalescents with multiple collisions, Ann. Probab.27 (1999) 1870-1902. Zbl0963.60079MR1742892
- [13] S. Sagitov, The general coalescent with asynchronous mergers of ancester lines, J. Appl. Probab.36 (1999) 1116-1125. Zbl0962.92026MR1742154
- [14] J. Schweinsberg, Coalescents with simultaneous multiple collisions, Electr. J. Probab.5–12 (2000) 1-50, http://www.math.washington.edu/~ejpecp/ejp5contents.html. Zbl0959.60065MR1781024
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.