Properties of perpetual integral functionals of brownian motion with drift

Paavo Salminen; Marc Yor

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 3, page 335-347
  • ISSN: 0246-0203

How to cite

top

Salminen, Paavo, and Yor, Marc. "Properties of perpetual integral functionals of brownian motion with drift." Annales de l'I.H.P. Probabilités et statistiques 41.3 (2005): 335-347. <http://eudml.org/doc/77848>.

@article{Salminen2005,
author = {Salminen, Paavo, Yor, Marc},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Local time; Green function; Kac's moment formula; Khas'minskii's lemma; Last exit time},
language = {eng},
number = {3},
pages = {335-347},
publisher = {Elsevier},
title = {Properties of perpetual integral functionals of brownian motion with drift},
url = {http://eudml.org/doc/77848},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Salminen, Paavo
AU - Yor, Marc
TI - Properties of perpetual integral functionals of brownian motion with drift
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 3
SP - 335
EP - 347
LA - eng
KW - Local time; Green function; Kac's moment formula; Khas'minskii's lemma; Last exit time
UR - http://eudml.org/doc/77848
ER -

References

top
  1. [1] J. Bertoin, Subordinators: Examples and applications, in: Bertoin J., Martinelli F., Peres Y. (Eds.), École d'eté de Probabilités de Saint-Flour XXVII-1997, Lecture Notes in Math., vol. 1717, Springer, Berlin, 1999, pp. 1-91. Zbl0955.60046MR1746300
  2. [2] A.N. Borodin, P. Salminen, Handbook of Brownian Motion – Facts and Formulae, Birkhäuser, Basel, 2002. Zbl1012.60003MR1912205
  3. [3] A.S. Cherny, Convergence of some integrals associated with Bessel processes, Theoret. Probab. Appl.45 (2000) 251-267. Zbl0982.60077MR1967756
  4. [4] K.L. Chung, Z. Zhao, From Brownian Motion to Schrödinger's Equation, Springer-Verlag, Berlin, 1995. Zbl0819.60068MR1329992
  5. [5] M. Csörgö, L. Horváth, Q.M. Shao, Convergence of integrals of uniform empirical and quantile processes, Stochastic Process. Appl.45 (1993) 278-294. Zbl0784.60038MR1208874
  6. [6] C. Dellacherie, P.A. Meyer, Probabilités et Potentiel, vols. I–V, Hermann, Paris, 1975. Zbl0323.60039MR488194
  7. [7] D. Dufresne, The distribution of a perpetuity, with applications to risk theory and pension funding, Scand. Actuar. J.1–2 (1990) 39-79. Zbl0743.62101MR1129194
  8. [8] R. Durrett, Brownian Motion and Martingales in Analysis, Wadsworth, Belmont, CA, 1984. Zbl0554.60075MR750829
  9. [9] M. Emery, Une définition faible de BMO, Ann. Inst. H. Poincare21 (1985) 59-72. Zbl0611.60043MR791270
  10. [10] H.J. Engelbert, W. Schmidt, On the behaviour of certain functionals of the Wiener process and applications to stochastic differential equations, in: Stochastic Differential Systems. Proc. 3rd IFIP-WG 7/1 Working Conf., Lecture Notes in Control and Inform. Sci., vol. 36, Springer-Verlag, Berlin, 1981, pp. 47-55. Zbl0468.60077MR653645
  11. [11] H.J. Engelbert, W. Schmidt, On exponential local martingales connected with diffusion processes, Math. Nachr.119 (1984) 97-115. Zbl0565.60063MR774179
  12. [12] H.J. Engelbert, W. Schmidt, On the behaviour of certain Bessel functionals. An application to a class of stochastic differential equations, Math. Nachr.131 (1987) 219-234. Zbl0627.60070MR908813
  13. [13] H.J. Engelbert, T. Senf, On functionals of Wiener process with drift and exponential local martingales, in: Dozzi M., Engelbert H.J., Nualart D. (Eds.), Stochastic Processes and Related Topics, Proc. Wintersch. Stochastic Processes, Optim. Control, Georgenthal/Ger. 1990, Math. Res., vol. 61, Academic-Verlag, Berlin, 1991, pp. 45-58. Zbl0744.60098MR1127879
  14. [14] P. Fitzsimmons, J. Pitman, Kac's moment formula and the Feynman–Kac formula for additive functionals of a Markov process, Stochastic Process. Appl.79 (1999) 117-134. Zbl0962.60067MR1670526
  15. [15] T. Jeulin, Semimartingales et grossissement d'une filtration, Lecture Notes in Math., vol. 833, Springer-Verlag, Berlin, 1980. Zbl0444.60002MR604176
  16. [16] T. Jeulin, Sur la convergence absolue de certaines intégrales, in: Azéma J., Yor M. (Eds.), Séminaire de Probabilités XVI, Lecture Notes in Math., vol. 920, Springer, Berlin, 1982, pp. 248-256. Zbl0483.60020MR658688
  17. [17] N. Kazamaki, Continuous Exponential Martigales and BMO, Lecture Notes in Math., vol. 1579, Springer-Verlag, Berlin, 1994. Zbl0806.60033MR1299529
  18. [18] N. Kazamaki, T. Sekiguchi, On the transformation of some classes of martingales by a change of law, Tôhoku Math. J.31 (1979) 261-279. Zbl0438.60040MR547641
  19. [19] R. Khas'minskii, On positive solutions of the equation A u + V u = 0 , Theoret. Probab. Appl.4 (1959) 309-318. Zbl0089.34501
  20. [20] P.A. Meyer, Probabilités et potential, Hermann (Editions Scientifiques), Paris, 1966. MR205287
  21. [21] J. Pitman, M. Yor, Bessel processes and infinitely divisible laws, in: Williams D. (Ed.), Stochastic Integrals, Lecture Notes in Math., vol. 851, Springer-Verlag, Berlin, 1981, pp. 285-370. Zbl0469.60076MR620995
  22. [22] J. Pitman, M. Yor, A decomposition of Bessel bridges, Z. Wahrsch. Verw. Gebiete59 (1982) 425-457. Zbl0484.60062MR656509
  23. [23] J. Pitman, M. Yor, Some divergent integrals of Brownian motion, Adv. Appl. Probab. (Supplement) (1986) 109-116. Zbl0618.60074MR868512
  24. [24] P. Salminen, M. Yor, Perpetual integral functionals as hitting times, Elec. J. Prob., in press. Zbl1110.60078
  25. [25] L.A. Shepp, Radon–Nikodym derivatives of Gaussian measures, Ann. Math. Statist.37 (1966) 321-354. Zbl0142.13901MR190999
  26. [26] B. Simon, Functional Integration and Quantum Physics, Academic Press, New York, 1979. Zbl0434.28013MR544188
  27. [27] W. Stummer, K.-T. Sturm, On exponentials of additive functionals of Markov processes, Stochastic Process. Appl.85 (2000) 45-60. Zbl0996.60090MR1730619
  28. [28] X.-X. Xue, A zero-one law for integral functionals of the Bessel process, in: Azéma J., Meyer P.A., Yor M. (Eds.), Séminaire de Probabilités XXIV, Lecture Notes in Math., vol. 1426, Springer, Berlin, 1990, pp. 137-153. Zbl0704.60082MR1071537
  29. [29] M. Yor, Sur certaines fonctionnelles exponentielles du mouvement brownien réel, J. Appl. Probab.29 (1992) 202-208. Zbl0758.60085MR1147781
  30. [30] M. Yor, Exponential Functionals of Brownian Motion and Related Processes, Springer Finance, Springer-Verlag, Berlin, 2001. Zbl0999.60004MR1854494

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.