Itô calculus and quantisation of Lie bialgebras

R. L. Hudson

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 3, page 375-390
  • ISSN: 0246-0203

How to cite

top

Hudson, R. L.. "Itô calculus and quantisation of Lie bialgebras." Annales de l'I.H.P. Probabilités et statistiques 41.3 (2005): 375-390. <http://eudml.org/doc/77850>.

@article{Hudson2005,
author = {Hudson, R. L.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {3},
pages = {375-390},
publisher = {Elsevier},
title = {Itô calculus and quantisation of Lie bialgebras},
url = {http://eudml.org/doc/77850},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Hudson, R. L.
TI - Itô calculus and quantisation of Lie bialgebras
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 3
SP - 375
EP - 390
LA - eng
UR - http://eudml.org/doc/77850
ER -

References

top
  1. [1] L. Accardi, A. Frigerio, J.T. Lewis, Quantum stochastic processes, Publ. RIMS Kyoto18 (1982) 97-133. Zbl0498.60099MR660823
  2. [2] B. Enriquez, Quantisation of Lie bialgebras and shuffle algebras of Lie algebras, Selecta Math. (N.S.)7 (2001) 321-407. Zbl1009.17010MR1868300
  3. [3] P. Etingof, D. Kazhdan, Quantization of Lie bialgebras, I, Selecta Math. (NS.)2 (1966) 1-41. Zbl0863.17008MR1403351
  4. [4] R.L. Hudson, Calculus in enveloping algebras, J. London Math. Soc. (2)65 (2002) 361-380. Zbl1010.17009MR1883188
  5. [5] R.L. Hudson, K.R. Parthasarathy, Quantum Itô's formula and stochastic evolutions, Commun. Math. Phys.93 (1984) 301-323. Zbl0546.60058MR745686
  6. [6] R.L. Hudson, K.R. Parthasarathy, S. Pulmannová, The method of formal power series in quantum stochastic calculus, IDAQP3 (2000) 387-401. Zbl0968.60101MR1811249
  7. [7] R.L. Hudson, S. Pulmannová, Double product integrals and Enriquez quantisation of Lie bialgebras I: the quasitriangularity relations, J. Math. Phys.45 (2004) 2090-2105. Zbl1071.81073MR2054150
  8. [8] R.L. Hudson, S. Pulmannová, Double product integrals and Enriquez quantisation of Lie bialgebras II: the quantum Yang–Baxter equation, Lett. Math. Phys., submitted for publication. Zbl1079.53139MR2164611
  9. [9] R.L. Hudson, S. Pulmannová, Symmetrized double quantum stochastic product integrals, J. Math. Phys.41 (2000) 8249-8262. Zbl0985.81053MR1797319
  10. [10] P.A. Meyer, Quantum Probability for Probabilists, Lecture Notes in Math., vol. 1538, Springer, 1993. Zbl0773.60098MR1222649
  11. [11] R.F. Streater, Current commutation relations, continuous tensor products and infinitely divisible group representations, Rend. Sc. Inst. Fisica E. FermiXI (1969) 247-263. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.