Finite utility on financial markets with asymmetric information and structure properties of the price dynamics
Stefan Ankirchner; Peter Imkeller
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 3, page 479-503
- ISSN: 0246-0203
Access Full Article
topHow to cite
topAnkirchner, Stefan, and Imkeller, Peter. "Finite utility on financial markets with asymmetric information and structure properties of the price dynamics." Annales de l'I.H.P. Probabilités et statistiques 41.3 (2005): 479-503. <http://eudml.org/doc/77855>.
@article{Ankirchner2005,
author = {Ankirchner, Stefan, Imkeller, Peter},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {insider trading; enlargement of filtration; free lunch with vanishing risk; (NFLVR); arbitrage; finite expected utility; semimartingale; stochastic integrator; information drift},
language = {eng},
number = {3},
pages = {479-503},
publisher = {Elsevier},
title = {Finite utility on financial markets with asymmetric information and structure properties of the price dynamics},
url = {http://eudml.org/doc/77855},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Ankirchner, Stefan
AU - Imkeller, Peter
TI - Finite utility on financial markets with asymmetric information and structure properties of the price dynamics
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 3
SP - 479
EP - 503
LA - eng
KW - insider trading; enlargement of filtration; free lunch with vanishing risk; (NFLVR); arbitrage; finite expected utility; semimartingale; stochastic integrator; information drift
UR - http://eudml.org/doc/77855
ER -
References
top- [1] J. Amendinger, Initial enlargement of filtrations and additional information in financial markets, Thesis, TU Berlin, 1999. Zbl0936.91022
- [2] J. Amendinger, D. Becherer, M. Schweizer, A monetary value for initial information in portfolio optimization, Finance and Stochastics7 (1) (2003) 29-46. Zbl1035.60069MR1954386
- [3] J. Amendinger, P. Imkeller, M. Schweizer, Additional logarithmic utility of an insider, Stochastic Process. Appl.75 (1998) 263-286. Zbl0934.91020MR1632213
- [4] S. Ankirchner, Information and semimartingales, PhD thesis, HU Berlin, 2005.
- [5] F. Baudoin, Conditioned stochastic differential equations: theory, examples, and applications to finance, Stochastic Process. Appl.100 (2002) 109-145. Zbl1058.60040MR1919610
- [6] F. Baudoin, Modeling Anticipations on Financial Markets, Paris–Princeton Lectures on Mathematical Finance 2002, Springer, Berlin, 2003. Zbl1180.91320MR2021790
- [7] F. Baudoin, L. Nguyen-Ngoc, The financial value of a weak information on a financial market, Finance and Stochastics8 (2004) 415-435. Zbl1064.60082MR2213259
- [8] F. Biagini, B. Oksendal, A general stochastic calculus approach to insider trading, Preprint, Univ. of Oslo, 2003. Zbl1093.60044MR2157199
- [9] M. Chaleyat-Maurel, T. Jeulin, Grossissement Gaussien de la filtration Brownienne, in: Jeulin T., Yor M. (Eds.), Grossissements de filtrations : exemples et applications, Lecture Notes in Math., vol. 1118, Springer, Berlin, 1985. Zbl0575.60046MR884713
- [10] J.M. Corcuera, P. Imkeller, A. Kohatsu-Higa, D. Nualart, Additional utility of insiders with imperfect dynamical information, Finance and Stochastics8 (2004) 437-450. Zbl1064.60087MR2213260
- [11] F. Delbaen, W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann.300 (1994) 463-520. Zbl0865.90014MR1304434
- [12] F. Delbaen, W. Schachermayer, The existence of absolutely continuous local martingale measures, Ann. Appl. Probab.5 (1995) 926-945. Zbl0847.90013MR1384360
- [13] F. Delbaen, W. Schachermayer, Arbitrage possibilities in Bessel processes and their relation to local martingales, Probab. Theory Related Fields102 (1995) 357-366. Zbl0830.90008MR1339738
- [14] F. Delbaen, W. Schachermayer, The variance-optimal martingale measure for continuous processes, Bernoulli2 (1996) 81-105. Zbl0849.60042MR1394053
- [15] C. Dellacherie, B. Maisonneuve, P.-A. Meyer, Probabilités et potentiel, Chap. XVII–XXIV, Hermann, Paris, 1992.
- [16] A. Grorud, M. Pontier, Insider trading in a continuous time market model, Int. J. Theoret. Appl. Finance1 (1998) 331-347. Zbl0909.90023
- [17] P. Imkeller, Random times at which insiders can have free lunches, Stochastics Stochastics Rep.74 (2002) 465-487. Zbl1041.91034MR1940496
- [18] P. Imkeller, Malliavin's calculus in insider models: additional utility and free lunches, Math. Finance13 (2003) 153-169. Zbl1071.91017MR1968102
- [19] P. Imkeller, M. Pontier, F. Weisz, Free lunch and arbitrage possibilities in a financial market model with an insider, Stochastic Process. Appl.92 (2001) 103-130. Zbl1047.60041MR1815181
- [20] J. Jacod, Grossissement initial, hypothèse et théorème de Girsanov, in: Jeulin T., Yor M. (Eds.), Grossissements de filtrations : exemples et applications, Lecture Notes in Math., vol. 1118, Springer, Berlin, 1985. Zbl0568.60049
- [21] T. Jeulin, Semi-martingales et grossissement de filtration, Lecture Notes in Math., vol. 833, Springer, Berlin, 1980. Zbl0444.60002MR604176
- [22] I. Karatzas, I. Pikovsky, Anticipative portfolio optimization, Adv. Appl. Probab.28 (1996) 1095-1122. Zbl0867.90013MR1418248
- [23] D. Kramkov, W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets, Ann. Appl. Probab.9 (1999) 904-950. Zbl0967.91017MR1722287
- [24] J.A. Leon, R. Navarro, D. Nualart, An anticipative calculus approach to the utility maximization of an insider, Math. Finance13 (2003). Zbl1060.91054MR1968103
- [25] P.A. Meyer, Sur un théorème de Jacod, Sém. de Probabilités XII, Lecture Notes in Math., vol. 649, Springer, Berlin, 1978. Zbl0381.60038
- [26] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 1995. Zbl1099.60003MR1344217
- [27] P. Protter, Stochastic Integration and Differential Equations, Springer, Berlin, 2004. Zbl1041.60005MR2020294
- [28] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1999. Zbl0917.60006MR1725357
- [29] F. Russo, P. Vallois, Forward, backward and symmetric stochastic integration, Probab. Theory Related Fields97 (1993) 403-421. Zbl0792.60046MR1245252
- [30] M. Schweizer, On the minimal martingale measure and the Föllmer–Schweizer decomposition, Stochastic Anal. Appl.13 (1995) 573-599. Zbl0837.60042MR1353193
- [31] S.-Q. Song, Grossissements de filtrations et problemes connexes, Thèse de doctorat, Univ. Pierre et Marie Curie Paris 6, 1987.
- [32] C.T. Wu, Construction of Brownian motions in enlarged filtrations and their role in mathematical models of insider trading, Dissertation, HU Berlin, 1999. Zbl1041.91042
- [33] M. Yor, Grossissement de filtrations et absolue continuité de noyaux, in: Jeulin T., Yor M. (Eds.), Grossissements de filtrations : exemples et applications, Lecture Notes in Math., vol. 1118, Springer, Berlin, 1985. Zbl0576.60038MR884713
- [34] M. Yor, Entropie d'une partition, et grossissement initial d'une filtration, in: Jeulin T., Yor M. (Eds.), Grossissements de filtrations : exemples et applications, Lecture Notes in Math., vol. 1118, Springer, Berlin, 1985. Zbl0568.60050MR884713
- [35] M. Yor, Inégalités de martingales continues arrêtées à un temps quelconque, I : théorèmes généraux, in: Jeulin T., Yor M. (Eds.), Grossissements de filtrations : exemples et applications, Lecture Notes in Math., vol. 1118, Springer, Berlin, 1985. Zbl0563.60045
- [36] M. Yor, Inégalités de martingales continues arrêtées à un temps quelconque, II : le rôle de certains espaces BMO, in: Jeulin T., Yor M. (Eds.), Grossissements de filtrations : exemples et applications, Lecture Notes in Math., vol. 1118, Springer, Berlin, 1985. Zbl0568.60051MR527071
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.