Last exit times for transient semistable processes

Ken-Iti Sato; Toshiro Watanabe

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 5, page 929-951
  • ISSN: 0246-0203

How to cite

top

Sato, Ken-Iti, and Watanabe, Toshiro. "Last exit times for transient semistable processes." Annales de l'I.H.P. Probabilités et statistiques 41.5 (2005): 929-951. <http://eudml.org/doc/77875>.

@article{Sato2005,
author = {Sato, Ken-Iti, Watanabe, Toshiro},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lévy process; stable process},
language = {eng},
number = {5},
pages = {929-951},
publisher = {Elsevier},
title = {Last exit times for transient semistable processes},
url = {http://eudml.org/doc/77875},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Sato, Ken-Iti
AU - Watanabe, Toshiro
TI - Last exit times for transient semistable processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 5
SP - 929
EP - 951
LA - eng
KW - Lévy process; stable process
UR - http://eudml.org/doc/77875
ER -

References

top
  1. [1] J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, 1996. Zbl0861.60003MR1406564
  2. [2] R.M. Blumenthal, R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968. Zbl0169.49204MR264757
  3. [3] G.S. Choi, Criteria for recurrence and transience of semistable processes, Nagoya Math. J.134 (1994) 91-106. Zbl0804.60064MR1280655
  4. [4] R.K. Getoor, Some asymptotic formulas involving capacity, Z. Wahrsch. Verw. Gebiete4 (1965) 248-252. Zbl0295.60055MR190988
  5. [5] J. Hawkes, Moments of last exit times, Mathematika24 (1977) 266-269. Zbl0384.60053MR488316
  6. [6] S. Hiraba, Asymptotic behaviour of densities of multi-dimensional stable distributions, Tsukuba J. Math.18 (1994) 223-246. Zbl0807.60021MR1287843
  7. [7] N. Jain, W.E. Pruitt, The range of random walk, in: Proc. Sixth Berkeley Symp. Math. Statist. Probab., vol. 3, University of California Press, Berkeley and Los Angeles, 1972, pp. 31-50. Zbl0276.60066MR410936
  8. [8] J.-F. Le Gall, Sur une conjecture de M. Kac, Probab. Theory Related Fields78 (1988) 389-402. Zbl0655.60067MR949180
  9. [9] P. Lévy, Théorie de l'Addition des Variables Aléatoires, Gauthier-Villars, Paris, 1937, 2e éd., 1954. Zbl63.0490.04JFM63.0490.04
  10. [10] S.C. Port, Limit theorems involving capacities, J. Math. Mech.15 (1966) 805-832. Zbl0146.38406MR211471
  11. [11] S.C. Port, Limit theorems for transient Markov chains, J. Combin. Theory2 (1967) 107-128. Zbl0162.49101MR207046
  12. [12] S.C. Port, Hitting times for transient stable processes, Pacific J. Math.21 (1967) 161-165. Zbl0154.18904MR208681
  13. [13] S.C. Port, Stable processes with drift on the line, Trans. Amer. Math. Soc.313 (1989) 605-841. Zbl0681.60068MR997680
  14. [14] S.C. Port, Asymptotic expansions for the expected volume of a stable sausage, Ann. Probab.18 (1990) 492-523. Zbl0705.60061MR1055417
  15. [15] S.C. Port, Spitzer's formula involving capacity, in: Durrett R., Kesten H. (Eds.), Random Walks, Brownian Motion, and Interacting Particle Systems. A Festschrift in Honor of Frank Spitzer, Birkhäuser, Boston, 1991, pp. 373-388. Zbl0737.60013MR1146459
  16. [16] S.C. Port, C.J. Stone, Infinitely divisible processes and their potential theory, I and II, Ann. Inst. Fourier (Grenoble)21 (2) (1971) 157-275. Zbl0195.47601MR346919
  17. [17] S.C. Port, R.A. Vitale, Positivity of stable densities, Proc. Amer. Math. Soc.102 (1988) 1018-1023. Zbl0648.60016MR934885
  18. [18] B.S. Rajput, K. Rama-Murthy, T. Zak, Supports of semi-stable probability measures on locally convex spaces, J. Theor. Probab.7 (1994) 931-942. Zbl0807.60005MR1295546
  19. [19] K. Sato, Time evolution in distributions of Lévy processes, Southeast Asian Bull. Math.19 (2) (1995) 17-26. Zbl0843.60066MR1376625
  20. [20] K. Sato, Criteria of weak and strong transience for Lévy processes, in: Watanabe S., (Eds.), Probability Theory and Mathematical Statistics, Proc. Seventh Japan–Russia Symp., World Scientific, Singapore, 1996, pp. 438-449. Zbl0963.60043MR1467961
  21. [21] K. Sato, Time evolution of Lévy processes, in: Kono N., Shieh N.-R. (Eds.), Trends in Probability and Related Analysis, Proc. SAP '96, World Scientific, Singapore, 1997, pp. 35-82. Zbl1010.60042MR1616274
  22. [22] K. Sato, Semi-stable processes and their extensions, in: Kono N., Shieh N.-R. (Eds.), Trends in Probability and Related Analysis, Proc. SAP '98, World Scientific, Singapore, 1999, pp. 129-145. Zbl1171.60345MR1819201
  23. [23] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999. Zbl0973.60001MR1739520
  24. [24] K. Sato, T. Watanabe, Moments of last exit times for Lévy processes, Ann. Inst. H. Poincaré Probab. Statist.40 (2004) 207-225. Zbl1053.60048MR2044816
  25. [25] M.J. Sharpe, Supports of convolution semigroups and densities, in: Probability Measures on Groups and Related Structures, XI (Oberwolfach, 1994), World Scientific, River Edge, NJ, 1995, pp. 364-369. Zbl0909.60052MR1414946
  26. [26] F. Spitzer, Electrostatic capacity, heat flow, and Brownian motion, Z. Wahrsch. Verw. Gebiete3 (1964) 110-121. Zbl0126.33505MR172343
  27. [27] J. Takeuchi, Moments of the last exit times, Proc. Japan Acad.43 (1967) 355-360. Zbl0178.19403MR222961
  28. [28] S.J. Taylor, Sample path properties of a transient stable process, J. Math. Mech.16 (1967) 1229-1246. Zbl0178.19301MR208684
  29. [29] A. Tortrat, Le support des lois indéfiniment divisibles dans un groupe Abélien localemnet compact, Math. Z.197 (1988) 231-250. Zbl0618.60013MR923491
  30. [30] T. Watanabe, Oscillation of modes of some semi-stable Lévy processes, Nagoya Math. J.132 (1993) 141-153. Zbl0816.60016MR1253699
  31. [31] T. Watanabe, Some examples on unimodality of Lévy processes, Kodai Math. J.17 (1994) 38-47. Zbl0803.60072MR1262952

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.