Last exit times for transient semistable processes
Ken-Iti Sato; Toshiro Watanabe
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 5, page 929-951
- ISSN: 0246-0203
Access Full Article
topHow to cite
topSato, Ken-Iti, and Watanabe, Toshiro. "Last exit times for transient semistable processes." Annales de l'I.H.P. Probabilités et statistiques 41.5 (2005): 929-951. <http://eudml.org/doc/77875>.
@article{Sato2005,
author = {Sato, Ken-Iti, Watanabe, Toshiro},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lévy process; stable process},
language = {eng},
number = {5},
pages = {929-951},
publisher = {Elsevier},
title = {Last exit times for transient semistable processes},
url = {http://eudml.org/doc/77875},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Sato, Ken-Iti
AU - Watanabe, Toshiro
TI - Last exit times for transient semistable processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 5
SP - 929
EP - 951
LA - eng
KW - Lévy process; stable process
UR - http://eudml.org/doc/77875
ER -
References
top- [1] J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, 1996. Zbl0861.60003MR1406564
- [2] R.M. Blumenthal, R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968. Zbl0169.49204MR264757
- [3] G.S. Choi, Criteria for recurrence and transience of semistable processes, Nagoya Math. J.134 (1994) 91-106. Zbl0804.60064MR1280655
- [4] R.K. Getoor, Some asymptotic formulas involving capacity, Z. Wahrsch. Verw. Gebiete4 (1965) 248-252. Zbl0295.60055MR190988
- [5] J. Hawkes, Moments of last exit times, Mathematika24 (1977) 266-269. Zbl0384.60053MR488316
- [6] S. Hiraba, Asymptotic behaviour of densities of multi-dimensional stable distributions, Tsukuba J. Math.18 (1994) 223-246. Zbl0807.60021MR1287843
- [7] N. Jain, W.E. Pruitt, The range of random walk, in: Proc. Sixth Berkeley Symp. Math. Statist. Probab., vol. 3, University of California Press, Berkeley and Los Angeles, 1972, pp. 31-50. Zbl0276.60066MR410936
- [8] J.-F. Le Gall, Sur une conjecture de M. Kac, Probab. Theory Related Fields78 (1988) 389-402. Zbl0655.60067MR949180
- [9] P. Lévy, Théorie de l'Addition des Variables Aléatoires, Gauthier-Villars, Paris, 1937, 2e éd., 1954. Zbl63.0490.04JFM63.0490.04
- [10] S.C. Port, Limit theorems involving capacities, J. Math. Mech.15 (1966) 805-832. Zbl0146.38406MR211471
- [11] S.C. Port, Limit theorems for transient Markov chains, J. Combin. Theory2 (1967) 107-128. Zbl0162.49101MR207046
- [12] S.C. Port, Hitting times for transient stable processes, Pacific J. Math.21 (1967) 161-165. Zbl0154.18904MR208681
- [13] S.C. Port, Stable processes with drift on the line, Trans. Amer. Math. Soc.313 (1989) 605-841. Zbl0681.60068MR997680
- [14] S.C. Port, Asymptotic expansions for the expected volume of a stable sausage, Ann. Probab.18 (1990) 492-523. Zbl0705.60061MR1055417
- [15] S.C. Port, Spitzer's formula involving capacity, in: Durrett R., Kesten H. (Eds.), Random Walks, Brownian Motion, and Interacting Particle Systems. A Festschrift in Honor of Frank Spitzer, Birkhäuser, Boston, 1991, pp. 373-388. Zbl0737.60013MR1146459
- [16] S.C. Port, C.J. Stone, Infinitely divisible processes and their potential theory, I and II, Ann. Inst. Fourier (Grenoble)21 (2) (1971) 157-275. Zbl0195.47601MR346919
- [17] S.C. Port, R.A. Vitale, Positivity of stable densities, Proc. Amer. Math. Soc.102 (1988) 1018-1023. Zbl0648.60016MR934885
- [18] B.S. Rajput, K. Rama-Murthy, T. Zak, Supports of semi-stable probability measures on locally convex spaces, J. Theor. Probab.7 (1994) 931-942. Zbl0807.60005MR1295546
- [19] K. Sato, Time evolution in distributions of Lévy processes, Southeast Asian Bull. Math.19 (2) (1995) 17-26. Zbl0843.60066MR1376625
- [20] K. Sato, Criteria of weak and strong transience for Lévy processes, in: Watanabe S., (Eds.), Probability Theory and Mathematical Statistics, Proc. Seventh Japan–Russia Symp., World Scientific, Singapore, 1996, pp. 438-449. Zbl0963.60043MR1467961
- [21] K. Sato, Time evolution of Lévy processes, in: Kono N., Shieh N.-R. (Eds.), Trends in Probability and Related Analysis, Proc. SAP '96, World Scientific, Singapore, 1997, pp. 35-82. Zbl1010.60042MR1616274
- [22] K. Sato, Semi-stable processes and their extensions, in: Kono N., Shieh N.-R. (Eds.), Trends in Probability and Related Analysis, Proc. SAP '98, World Scientific, Singapore, 1999, pp. 129-145. Zbl1171.60345MR1819201
- [23] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999. Zbl0973.60001MR1739520
- [24] K. Sato, T. Watanabe, Moments of last exit times for Lévy processes, Ann. Inst. H. Poincaré Probab. Statist.40 (2004) 207-225. Zbl1053.60048MR2044816
- [25] M.J. Sharpe, Supports of convolution semigroups and densities, in: Probability Measures on Groups and Related Structures, XI (Oberwolfach, 1994), World Scientific, River Edge, NJ, 1995, pp. 364-369. Zbl0909.60052MR1414946
- [26] F. Spitzer, Electrostatic capacity, heat flow, and Brownian motion, Z. Wahrsch. Verw. Gebiete3 (1964) 110-121. Zbl0126.33505MR172343
- [27] J. Takeuchi, Moments of the last exit times, Proc. Japan Acad.43 (1967) 355-360. Zbl0178.19403MR222961
- [28] S.J. Taylor, Sample path properties of a transient stable process, J. Math. Mech.16 (1967) 1229-1246. Zbl0178.19301MR208684
- [29] A. Tortrat, Le support des lois indéfiniment divisibles dans un groupe Abélien localemnet compact, Math. Z.197 (1988) 231-250. Zbl0618.60013MR923491
- [30] T. Watanabe, Oscillation of modes of some semi-stable Lévy processes, Nagoya Math. J.132 (1993) 141-153. Zbl0816.60016MR1253699
- [31] T. Watanabe, Some examples on unimodality of Lévy processes, Kodai Math. J.17 (1994) 38-47. Zbl0803.60072MR1262952
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.