Large deviations of Markov chains indexed by random trees
Amir Dembo; Peter Mörters; Scott Sheffield
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 6, page 971-996
- ISSN: 0246-0203
Access Full Article
topHow to cite
topDembo, Amir, Mörters, Peter, and Sheffield, Scott. "Large deviations of Markov chains indexed by random trees." Annales de l'I.H.P. Probabilités et statistiques 41.6 (2005): 971-996. <http://eudml.org/doc/77881>.
@article{Dembo2005,
author = {Dembo, Amir, Mörters, Peter, Sheffield, Scott},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Tree-indexed Markov chain; Branching Markov chain; Galton-Watson tree; Multitype Galton-Watson process; Multitype Galton-Watson tree; Marked tree; Large deviation principle; Empirical pair measure; Empirical offspring measure; Process level},
language = {eng},
number = {6},
pages = {971-996},
publisher = {Elsevier},
title = {Large deviations of Markov chains indexed by random trees},
url = {http://eudml.org/doc/77881},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Dembo, Amir
AU - Mörters, Peter
AU - Sheffield, Scott
TI - Large deviations of Markov chains indexed by random trees
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 6
SP - 971
EP - 996
LA - eng
KW - Tree-indexed Markov chain; Branching Markov chain; Galton-Watson tree; Multitype Galton-Watson process; Multitype Galton-Watson tree; Marked tree; Large deviation principle; Empirical pair measure; Empirical offspring measure; Process level
UR - http://eudml.org/doc/77881
ER -
References
top- [1] D. Aldous, The continuum random tree II: An overview, in: Stochastic Analysis, Proc. Symp., Durham/UK 1990, London Math. Soc. Lecture Note Ser., vol. 167, 1991, pp. 23-70. Zbl0791.60008MR1166406
- [2] K.B. Athreya, P.E. Ney, Branching Processes, Springer, New York, 1972. Zbl0259.60002MR373040
- [3] I. Benjamini, Y. Peres, Markov chains indexed by trees, Ann. Probab.22 (1994) 219-243. Zbl0793.60080MR1258875
- [4] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Springer, New York, 1998. Zbl0896.60013MR1619036
- [5] A. Dembo, N. Gantert, Y. Peres, O. Zeitouni, Large deviations for random walks on Galton–Watson trees: averaging and uncertainty, Probab. Theory Related Fields122 (2002) 241-288. Zbl0996.60110MR1894069
- [6] R. Durrett, Probability: Theory and Examples, Duxbury Press, Belmont, CA, 1996. Zbl1202.60001MR1609153
- [7] M. Dwass, The total progeny in a branching process and a related random walk, J. Appl. Probab.6 (1969) 682-686. Zbl0192.54401MR253433
- [8] H.O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter, Berlin, 1988. Zbl0657.60122MR956646
- [9] P. Jagers, Branching Processes with Biological Applications, Wiley, London, 1975. Zbl0356.60039MR488341
- [10] O. Kallenberg, Stability of critical cluster fields, Math. Nachr.77 (1977) 7-43. Zbl0361.60058MR443078
- [11] D.P. Kennedy, The Galton–Watson process conditioned on the total progeny, J. Appl. Probab.12 (1975) 800-806. Zbl0322.60072MR386042
- [12] W. König, P. Mörters, Brownian intersection local times: upper tails and thick points, Ann. Probab.30 (2002) 1605-1656. Zbl1032.60073MR1944002
- [13] J.-F. Le Gall, The Hausdorff measure of the range of super-Brownian motion, in: Bramson M., Durrett R. (Eds.), Perplexing Problems in Probability, Birkhäuser, Basel, 1999, pp. 285-314. Zbl0945.60039MR1703137
- [14] R. Lyons, R. Pemantle, Y. Peres, Ergodic theory on Galton–Watson trees: speed of random walk and dimension of harmonic measure, Ergodic Theory Dynam. Systems15 (1995) 593-619. Zbl0819.60077MR1336708
- [15] A. Meir, J.W. Moon, On the altitude of nodes in random trees, Canad. J. Math.30 (1978) 997-1015. Zbl0394.05015MR506256
- [16] R. Otter, The multiplicative process, Ann. Math. Statist.20 (1949) 206-224. Zbl0033.38301MR30716
- [17] R. Pemantle, Tree-indexed processes, Statist. Sci.10 (2) (1995) 200-231. Zbl0955.60528MR1368099
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.