Hausdorff–Besicovitch measure of fractal functional limit laws induced by Wiener process in Hölder norms
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 3, page 373-392
- ISSN: 0246-0203
Access Full Article
topHow to cite
topLucas, Alain, and Thilly, Emmanuel. "Hausdorff–Besicovitch measure of fractal functional limit laws induced by Wiener process in Hölder norms." Annales de l'I.H.P. Probabilités et statistiques 42.3 (2006): 373-392. <http://eudml.org/doc/77900>.
@article{Lucas2006,
author = {Lucas, Alain, Thilly, Emmanuel},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Strassen's law; de Acosta's law; rate of convergence; limsup random fractals; modulus of continuity; Brownian motion},
language = {eng},
number = {3},
pages = {373-392},
publisher = {Elsevier},
title = {Hausdorff–Besicovitch measure of fractal functional limit laws induced by Wiener process in Hölder norms},
url = {http://eudml.org/doc/77900},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Lucas, Alain
AU - Thilly, Emmanuel
TI - Hausdorff–Besicovitch measure of fractal functional limit laws induced by Wiener process in Hölder norms
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 3
SP - 373
EP - 392
LA - eng
KW - Strassen's law; de Acosta's law; rate of convergence; limsup random fractals; modulus of continuity; Brownian motion
UR - http://eudml.org/doc/77900
ER -
References
top- [1] A. de Acosta, On the functional form of Lévy's modulus of continuity for Brownian motion, Z. Wahr. Verw. Gebiete69 (1985) 567-579. Zbl0548.60034MR791912
- [2] P. Baldi, R. Roynette, Some exact equivalents for the Brownian motion in Hölder norm, Probab. Theory Related Fields93 (1992) 457-484. Zbl0767.60078MR1183887
- [3] P. Berthet, Vitesses de recouvrement dans les lois fonctionnelles du logarithme itéré pour les increments du processus empirique uniforme avec applications statistiques, Thèse de l'Université Paris 6, 1996.
- [4] M. Csörgő, P. Révész, How small are the increments of a Wiener process?, Stochastic Process. Appl.8 (1979) 119-129. Zbl0387.60032MR520824
- [5] P. Deheuvels, M.A. Lifshits, On the Hausdorff dimension of the set generated by exceptional oscillations of a Wiener process, Studia Sci. Math. Hungar.33 (1997) 75-110. Zbl0908.60012MR1454103
- [6] P. Deheuvels, D.M. Mason, Random fractals generated by oscillations processes with stationary and independent increments, in: Hoffman-Jorgensen J., Kuelbs J., Marcus M.B. (Eds.), Probability in Banach Spaces, vol. 9, 1994, pp. 73-90. Zbl0809.60042MR1308511
- [7] P. Deheuvels, D.M. Mason, Random fractal functional laws of the iterated logarithm, Studia Sci. Math. Hungar.34 (1997) 89-106. Zbl0916.60037MR1645150
- [8] P. Deheuvels, D.M. Mason, On the fractal nature of empirical increments, Ann. Probab.23 (1995) 355-387. Zbl0835.60024MR1330774
- [9] N. Gorn, M.A. Lifshits, Chung's law and Csáki function, J. Theoret. Probab.12 (1999) 399-420. Zbl0937.60013MR1684751
- [10] K.J. Falconer, Fractal Geometry, Mathematical Foundations and Applications, Wiley, New York, 1990. Zbl0871.28009MR1102677
- [11] D. Khoshnevisan, Y. Peres, Y. Xiao, Limsup random fractals, Electron. J. Probab.5 (2000) 1-24. Zbl0949.60025MR1743726
- [12] J. Kuelbs, W. Li, Small ball estimates for Brownian motion and the Brownian sheet, J. Theoret. Probab.6 (1993) 547-577. Zbl0780.60079MR1230346
- [13] J. Kuelbs, W. Li, M. Talagrand, Liminf results for Gaussian samples and Chung's functional LIL, Ann. Probab.22 (1994) 1879-1903. Zbl0849.60022MR1331209
- [14] A. Lucas, Hausdorff–Besicovitch measure for random fractals of Chung's type, Math. Proc. Cambridge Philos. Soc.133 (2002) 487-513. Zbl1014.60029MR1919718
- [15] S. Orey, S.J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail?, Math. Proc. Cambridge Philos. Soc.49 (1974) 31-39. Zbl0050.05803MR359031
- [16] G. Shorack, J.A. Wellner, Empirical Processes with Applications to Statistics, John Wiley & Sons, 1986. Zbl1170.62365MR838963
- [17] V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahr. Verw. Gebiete3 (1964) 211-226. Zbl0132.12903MR175194
- [18] Q. Wei, Functional modulus of continuity for Brownian motion in Hölder norm, Chinese Ann. Math. Ser. B22 (2001) 223-232. Zbl0974.60019MR1835402
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.