Conditioned brownian trees

Jean-François Le Gall; Mathilde Weill

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 4, page 455-489
  • ISSN: 0246-0203

How to cite

top

Le Gall, Jean-François, and Weill, Mathilde. "Conditioned brownian trees." Annales de l'I.H.P. Probabilités et statistiques 42.4 (2006): 455-489. <http://eudml.org/doc/77903>.

@article{LeGall2006,
author = {Le Gall, Jean-François, Weill, Mathilde},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random continuous tree; Brownian snake; Brownian excursion; integrated super-Brownian excursion; re-rooting},
language = {eng},
number = {4},
pages = {455-489},
publisher = {Elsevier},
title = {Conditioned brownian trees},
url = {http://eudml.org/doc/77903},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Le Gall, Jean-François
AU - Weill, Mathilde
TI - Conditioned brownian trees
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 4
SP - 455
EP - 489
LA - eng
KW - random continuous tree; Brownian snake; Brownian excursion; integrated super-Brownian excursion; re-rooting
UR - http://eudml.org/doc/77903
ER -

References

top
  1. [1] R. Abraham, W. Werner, Avoiding probabilities for Brownian snakes and super-Brownian motion, Electron. J. Probab.2 (3) (1997) 27. Zbl0890.60068MR1447333
  2. [2] R. Abraham, L. Serlet, Representations of the Brownian snake with drift, Stochastics Stochastics Rep.73 (2002) 287-308. Zbl1011.60055MR1932163
  3. [3] D. Aldous, The continuum random tree I, Ann. Probab.19 (1991) 1-28. Zbl0722.60013MR1085326
  4. [4] D. Aldous, The continuum random tree. II. An overview, in: Stochastic Analysis, Durham, 1990, London Math. Soc. Lecture Note Ser., vol. 167, Cambridge Univ. Press, Cambridge, 1991, pp. 23-70. Zbl0791.60008MR1166406
  5. [5] D. Aldous, The continuum random tree III, Ann. Probab.21 (1993) 248-289. Zbl0791.60009MR1207226
  6. [6] D. Aldous, Tree-based models for random distribution of mass, J. Statist. Phys.73 (1993) 625-641. Zbl1102.60318MR1251658
  7. [7] J. Bouttier, P. Di Francesco, E. Guitter, Random trees between two walls: exact partition function, J. Phys. A36 (2003) 12349-12366. Zbl1051.82010MR2025872
  8. [8] J. Bouttier, P. Di Francesco, E. Guitter, Statistics of planar graphs viewed from a vertex: a study via labeled trees, Nucl. Phys. B675 (2003) 631-660. Zbl1027.05021MR2018892
  9. [9] P. Chassaing, B. Durhuus, Statistical Hausdorff dimension of labelled trees and quadrangulations, Preprint, 2003. 
  10. [10] P. Chassaing, G. Schaeffer, Random planar lattices and integrated super-Brownian excursion, Probab. Theory Related Fields128 (2004) 161-212. Zbl1041.60008MR2031225
  11. [11] R. Cori, B. Vauquelin, Planar trees are well labeled trees, Canad. J. Math.33 (1981) 1023-1042. Zbl0415.05020MR638363
  12. [12] J.F. Delmas, Computation of moments for the length of the one dimensional ISE support, Electron. J. Probab.8 (17) (2003) 15. Zbl1064.60169MR2041818
  13. [13] E. Derbez, G. Slade, The scaling limit of lattice trees in high dimensions, Comm. Math. Phys.198 (1998) 69-104. Zbl0915.60076MR1620301
  14. [14] T. Duquesne, A limit theorem for the contour process of conditioned Galton–Watson trees, Ann. Probab.31 (2003) 996-1027. Zbl1025.60017MR1964956
  15. [15] T. Duquesne, J.F. Le Gall, Probabilistic and fractal aspects of Lévy trees, Probab. Theory Related Fields131 (2005) 553-603. Zbl1070.60076MR2147221
  16. [16] S.N. Evans, J.W. Pitman, A. Winter, Rayleigh processes, real trees and root growth with re-grafting, Probab. Theory Related Fields (2003), in press. Zbl1086.60050
  17. [17] T. Hara, G. Slade, The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. Probabilistic techniques in equilibrium and nonequilibrium statistical physics, J. Math. Phys.41 (2000) 1244-1293. Zbl0977.82022MR1757958
  18. [18] S. Janson, J.F. Marckert, Convergence of discrete snakes, J. Theoret. Probab. (2003), in press. Zbl1084.60049MR2167644
  19. [19] K.M. Jansons, L.C.G. Rogers, Decomposing the branching Brownian path, Ann. Probab.2 (1992) 973-986. Zbl0771.60057MR1189426
  20. [20] O. Kallenberg, Random Measures, Academic Press, London, 1975. Zbl0345.60032MR818219
  21. [21] J.F. Le Gall, Brownian excursions, trees and measure-valued branching processes, Ann. Probab.19 (1991) 1399-1439. Zbl0753.60078MR1127710
  22. [22] J.F. Le Gall, The uniform random tree in a Brownian excursion, Probab. Theory Related Fields96 (1993) 369-383. Zbl0794.60080MR1231930
  23. [23] J.F. Le Gall, The Brownian snake and solutions of Δ u = u 2 in a domain, Probab. Theory Related Fields102 (1995) 393-432. Zbl0826.60062
  24. [24] J.F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures Math. ETH Zürich, Birkhäuser, Boston, 1999. Zbl0938.60003MR1714707
  25. [25] J.F. Le Gall, A conditional limit theorem for tree-indexed random walk, Stochastic Process. Appl. (2005), in press. Zbl1093.60061MR2205115
  26. [26] J.F. Marckert, A. Mokkadem, State spaces of the snake and its tour – convergence of the discrete snake, J. Theoret. Probab.16 (2004) 1015-1046. Zbl1044.60083MR2033196
  27. [27] J.F. Marckert, A. Mokkadem, Limits of normalized quadrangulations. The Brownian map, Preprint, 2004. Zbl1117.60038MR2294979
  28. [28] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1991. Zbl0731.60002MR1083357
  29. [29] R. van der Hofstad, G. Slade, Convergence of critical oriented percolation to super-Brownian motion above 4 + 1 dimensions, Ann. Inst. H. Poincaré Probab. Statist.39 (2003) 413-485. Zbl1020.60099MR1978987
  30. [30] W. Vervaat, A relation between Brownian bridge and Brownian excursion, Ann. Probab.7 (1979) 143-149. Zbl0392.60058MR515820
  31. [31] M. Yor, Loi de l'indice du lacet brownien, et distribution de Hartman–Watson, Z. Wahr. Verw. Gebiete53 (1980) 71-95. Zbl0436.60057MR576898

NotesEmbed ?

top

You must be logged in to post comments.