Local behaviour of local times of super-brownian motion

Mathieu Merle

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 4, page 491-520
  • ISSN: 0246-0203

How to cite

top

Merle, Mathieu. "Local behaviour of local times of super-brownian motion." Annales de l'I.H.P. Probabilités et statistiques 42.4 (2006): 491-520. <http://eudml.org/doc/77904>.

@article{Merle2006,
author = {Merle, Mathieu},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {occupation measure},
language = {eng},
number = {4},
pages = {491-520},
publisher = {Elsevier},
title = {Local behaviour of local times of super-brownian motion},
url = {http://eudml.org/doc/77904},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Merle, Mathieu
TI - Local behaviour of local times of super-brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 4
SP - 491
EP - 520
LA - eng
KW - occupation measure
UR - http://eudml.org/doc/77904
ER -

References

top
  1. [1] R.J. Adler, M. Lewin, Local time and Tanaka formulae for super-Brownian motion and super stable processes, Stochastic Process. Appl.41 (1992) 45-67. Zbl0754.60086MR1162718
  2. [2] M.T. Barlow, S.N. Evans, E.A. Perkins, Collision local times and measure-valued processes, Canad. J. Math.43 (5) (1991) 897-938. Zbl0765.60044MR1138572
  3. [3] D. Dawson, I. Iscoe, E.A. Perkins, Super-Brownian motion: path properties and hitting probabilities, Probab. Theory Related Fields83 (1989) 135-205. Zbl0692.60063MR1012498
  4. [4] S.M. Krone, Local times for superdiffusions, Ann. Probab.21 (b) (1993) 1599-1623. Zbl0778.60056MR1235431
  5. [5] T.Y. Lee, Asymptotic results for super-Brownian motions and semilinear differential equations, Ann. Probab.29 (2001) 1047-1060. Zbl1018.60028MR1872735
  6. [6] J.F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures Math. ETH Zürich, Birkhäuser, 1999. Zbl0938.60003MR1714707
  7. [7] E.A. Perkins, Dawson–Watanabe superprocesses and measure-valued diffusions, in: Lectures on Probability Theory and Statistics, Ecole d'été de Probabilités de Saint-Flour XXIX, Lecture Notes in Math., vol. 1781, Springer, 1999. Zbl1020.60075
  8. [8] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1994. Zbl0804.60001MR1303781
  9. [9] S. Sugitani, Some properties for the measure-valued branching diffusion processes, J. Math. Soc. Japan41 (3) (1989) 437-462. Zbl0684.60049MR999507
  10. [10] D.W. Stroock, S.R.S. Varadhan, G.C. Papanicolaou, Martingale approach to some limit theorems, in: Statistical Mechanics and Dynamical Systems, Duke Univ. Math. Ser., vol. III, Duke Univ., Durham, NC, 1977. Zbl0387.60067MR461684
  11. [11] M. Yor, Le drap brownien comme limite en loi de temps locaux linéaires, in: Séminaire de Probabilités, Lecture Notes in Math., vol. 986, Springer, 1983. Zbl0514.60075MR770400

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.