The Martin entrance boundary of the Galton–Watson process
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 5, page 591-606
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] G. Alsmeyer, U. Rösler, Asexual versus promiscuous bisexual Galton–Watson processes: The extinction probability ratio, Ann. Appl. Probab.12 (2002) 125-142. Zbl1020.60073MR1890059
- [2] S. Asmussen, H. Hering, Branching Processes, Birkhäuser, Boston, 1983. Zbl0516.60095MR701538
- [3] K.B. Athreya, P. Ney, Branching Processes, Springer, New York, 1972. Zbl0259.60002MR373040
- [4] T.E. Harris, The Theory of Branching Processes, Springer, Heidelberg, 1963. Zbl0117.13002MR163361
- [5] P. Jagers, Branching Processes with Biological Applications, Wiley, London, 1975. Zbl0356.60039MR488341
- [6] S. Karlin, J. McGregor, Uniqueness of stationary measures for branching processes and applications, in: Proc. of the Fifth Berkeley Symposium, vol. II, Univ. of California Press, Berkeley, 1967, pp. 243-254. Zbl0218.60074MR214154
- [7] J.G. Kemeny, J.L. Snell, A.W. Knapp, Denumerable Markov Chains, Springer, New York, 1976. Zbl0149.13301MR407981
- [8] H. Kesten, P. Ney, F. Spitzer, The Galton–Watson process with mean one and finite variance, Theory Probab. Appl.11 (1966) 513-540. Zbl0158.35202MR207052
- [9] J.F.C. Kingman, Stationary for branching processes, Proc. Amer. Math. Soc.16 (1965) 245-247. Zbl0132.38305MR173291
- [10] F. Papangelou, A lemma on the Galton–Watson process and some of its consequences, Proc. Amer. Math. Soc.19 (1968) 1469-1479. Zbl0174.21301MR232457
- [11] E. Seneta, The Galton–Watson process with mean one, J. Appl. Probab.4 (1967) 489-495. Zbl0178.19601MR228075
- [12] F. Spitzer, Two explicit Martin boundary constructions, in: Symposium on Probab. Methods in Analysis, Lecture Notes in Math., vol. 31, Springer, Berlin, 1967, pp. 296-298. Zbl0158.12802MR224165