Fourier transform of a gaussian measure on the Heisenberg group

Mátyás Barczy; Gyula Pap

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 5, page 607-633
  • ISSN: 0246-0203

How to cite

top

Barczy, Mátyás, and Pap, Gyula. "Fourier transform of a gaussian measure on the Heisenberg group." Annales de l'I.H.P. Probabilités et statistiques 42.5 (2006): 607-633. <http://eudml.org/doc/77911>.

@article{Barczy2006,
author = {Barczy, Mátyás, Pap, Gyula},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {5},
pages = {607-633},
publisher = {Elsevier},
title = {Fourier transform of a gaussian measure on the Heisenberg group},
url = {http://eudml.org/doc/77911},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Barczy, Mátyás
AU - Pap, Gyula
TI - Fourier transform of a gaussian measure on the Heisenberg group
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 5
SP - 607
EP - 633
LA - eng
UR - http://eudml.org/doc/77911
ER -

References

top
  1. [1] R.B. Ash, Real Analysis and Probability, Academic Press, New York, 1972. MR435320
  2. [2] P. Baldi, Unicité du plongement d'une mesure de probabilité dans un semi-groupe de convolution gaussien, Cas non-abélien, Math. Z.188 (1985) 411-417. Zbl0562.60010MR771994
  3. [3] M. Chaleyat-Maurel, Densités des diffusions invariantes sur certains groupes nilpotents. Calcul d'aprés B. Gaveau, Astérisque84–85 (1981) 203-214. Zbl0474.60063
  4. [4] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989. Zbl0699.35006MR990239
  5. [5] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1965. Zbl0918.65002
  6. [6] W. Hazod, E. Siebert, Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups, Kluwer Academic Publishers, Drodrecht, 2001. Zbl1002.60002MR1860249
  7. [7] H. Heyer, Probability Measures on Locally Compact Groups, Springer, Berlin, 1977. Zbl0376.60002MR501241
  8. [8] D. Neuenschwander, Probabilities on the Heisenberg group: Limit theorems and Brownian motion, in: Lecture Notes in Math., vol. 1630, Springer, Berlin, 1996, pp. 379-397. Zbl0870.60007MR1439509
  9. [9] G. Pap, Uniqueness of embedding into a Gaussian semigroup on a nilpotent Lie group, Arch. Math. (Basel)62 (1994) 282-288. Zbl0804.60007MR1259845
  10. [10] G. Pap, Fourier transform of symmetric Gauss measures on the Heisenberg group, Semigroup Forum64 (2002) 130-158. Zbl0989.60006MR1867200
  11. [11] K.R. Parthatsarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967. Zbl0153.19101MR226684
  12. [12] B. Roynette, Croissance et mouvements browniens d'un groupe de Lie nilpotent et simplement connexe, Z. Wahr. Verw. Gebiete32 (1975) 133-138. Zbl0312.60036MR394909
  13. [13] E. Siebert, Fourier analysis and limit theorems for convolution semigroups on a locally compact group, Adv. Math.39 (1981) 111-154. Zbl0469.60014MR609202
  14. [14] E. Siebert, Absolute continuity, singularity, and supports of Gauss semigroups on a Lie group, Monatsh. Math.93 (1982) 239-253. Zbl0477.60008MR661571
  15. [15] M.E. Taylor, Noncommutative Harmonic Analysis, Math. Surveys Monogr., vol. 22, American Mathematical Society, Providence, RI, 1986. Zbl0604.43001MR852988
  16. [16] W. Tomé, The Representation Independent Propagator for General Lie Groups, World Scientific, Singapore, 1998. Zbl0916.58009MR1628602
  17. [17] D. Wehn, Probabilities on Lie groups, Proc. Natl. Acad. Sci. USA48 (1962) 791-795. Zbl0111.14104MR153042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.