Concentration of mass on the Schatten classes

O. Guédon; G. Paouris

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 1, page 87-99
  • ISSN: 0246-0203

How to cite

top

Guédon, O., and Paouris, G.. "Concentration of mass on the Schatten classes." Annales de l'I.H.P. Probabilités et statistiques 43.1 (2007): 87-99. <http://eudml.org/doc/77926>.

@article{Guédon2007,
author = {Guédon, O., Paouris, G.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Schatten-von Neumann classes; isotropic measure; Kahane-Khinchine inequalities; concentration inequalities},
language = {eng},
number = {1},
pages = {87-99},
publisher = {Elsevier},
title = {Concentration of mass on the Schatten classes},
url = {http://eudml.org/doc/77926},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Guédon, O.
AU - Paouris, G.
TI - Concentration of mass on the Schatten classes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 1
SP - 87
EP - 99
LA - eng
KW - Schatten-von Neumann classes; isotropic measure; Kahane-Khinchine inequalities; concentration inequalities
UR - http://eudml.org/doc/77926
ER -

References

top
  1. [1] S. Alesker, ψ 2 -estimate for the Euclidean norm on a convex body in isotropic position, in: Geometric Aspects of Functional Analysis (Israel, 1992–1994), Birkhäuser, Basel, 1995, pp. 1-4. Zbl0834.52004
  2. [2] M. Anttila, K. Ball, I. Perissinaki, The central limit problem for convex bodies, Trans. Amer. Math. Soc.355 (12) (2003) 4723-4735. Zbl1033.52003MR1997580
  3. [3] K. Aomoto, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal.18 (2) (1987) 545-549. Zbl0639.33001MR876291
  4. [4] G. Aubrun, S. Szarek, Tensor products of convex sets and the volume of separable states on N qudits, Preprint. 
  5. [5] S.G. Bobkov, F.L. Nazarov, On convex bodies and log-concave probability measures with unconditional basis, in: Milman V.D., Schechtman G. (Eds.), Geom. Aspects of Funct. Analysis, Lecture Notes in Math., vol. 1807, Springer, 2003, pp. 44-52. Zbl1039.52003MR2083388
  6. [6] C. Borell, Complements of Lyapunov's inequality, Math. Ann.205 (1973) 323-331. Zbl0248.26011MR323977
  7. [7] J. Bourgain, V.D. Milman, New volume ratio properties for convex symmetric bodies in R n , Invent. Math.88 (2) (1987) 319-340. Zbl0617.52006MR880954
  8. [8] A. Carbery, J. Wright, Distributional and L q norm inequalities for polynomials over convex bodies in R n , Math. Res. Lett.8 (2001) 233-248. Zbl0989.26010MR1839474
  9. [9] S. Chevet, Séries de variables aléatoires gaussiennes à valeurs dans E ˆ ϵ F . Application aux produits d’espaces de Wiener abstraits, in: Séminaire sur la Géométrie des Espaces de Banach (1977–1978) Exp. 19, École Polytech., Palaiseau, 1978, pp. 15. Zbl0395.60004
  10. [10] K.R. Davidson, S.J. Szarek, Local operator theory, random matrices and Banach spaces, in: Handbook of the Geometry of Banach Spaces, vol. 2, North-Holland, Amsterdam, 2003, pp. 1819-1820. Zbl1067.46008MR1999610
  11. [11] H. König, M. Meyer, A. Pajor, The isotropy constants of the Schatten classes are bounded, Math. Ann.312 (1998) 773-783. Zbl0927.46014MR1660231
  12. [12] M.L. Mehta, Random Matrices, second ed., Academic Press, Boston, 1991. Zbl0780.60014MR1083764
  13. [13] V.D. Milman, A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, in: Lindenstrauss J., Milman V.D. (Eds.), Geom. Aspects of Funct. Analysis, Lecture Notes in Math., vol. 1376, Springer, 1989, pp. 64-104. Zbl0679.46012MR1008717
  14. [14] V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces, Lecture Notes in Math., vol. 1200, Springer, Berlin, 1986. Zbl0606.46013MR856576
  15. [15] G. Paouris, Concentration of mass and central limit properties of isotropic convex bodies, Proc. Amer. Math. Soc.133 (2005) 565-575. Zbl1064.52005MR2093081
  16. [16] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracks in Math., vol. 94, Cambridge Univ. Press, 1989. Zbl0698.46008MR1036275
  17. [17] J. Saint-Raymond, Le volume des idéaux d'opérateurs classiques, Studia Math.80 (1984) 63-75. Zbl0507.51015MR781729

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.