A probabilistic representation for the solutions to some non-linear PDEs using pruned branching trees
D. Blömker; M. Romito; R. Tribe
Annales de l'I.H.P. Probabilités et statistiques (2007)
- Volume: 43, Issue: 2, page 175-192
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBlömker, D., Romito, M., and Tribe, R.. "A probabilistic representation for the solutions to some non-linear PDEs using pruned branching trees." Annales de l'I.H.P. Probabilités et statistiques 43.2 (2007): 175-192. <http://eudml.org/doc/77930>.
@article{Blömker2007,
author = {Blömker, D., Romito, M., Tribe, R.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {nonlinear PDEs; stochastic representation; branching processes; pruned trees},
language = {eng},
number = {2},
pages = {175-192},
publisher = {Elsevier},
title = {A probabilistic representation for the solutions to some non-linear PDEs using pruned branching trees},
url = {http://eudml.org/doc/77930},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Blömker, D.
AU - Romito, M.
AU - Tribe, R.
TI - A probabilistic representation for the solutions to some non-linear PDEs using pruned branching trees
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 2
SP - 175
EP - 192
LA - eng
KW - nonlinear PDEs; stochastic representation; branching processes; pruned trees
UR - http://eudml.org/doc/77930
ER -
References
top- [1] K.B. Athreya, P.E. Ney, Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, Band 196, Springer-Verlag, New York–Heidelberg, 1972. Zbl0259.60002
- [2] S. Athreya, R. Tribe, Uniqueness for a class of one-dimensional stochastic PDEs using moment duality, Ann. Probab.28 (4) (2000) 1711-1734. Zbl1044.60048MR1813840
- [3] Y. Bakhtin, Existence and uniqueness of stationary solutions for 3D Navier–Stokes system with small random forcing via stochastic cascades, J. Statist. Phys.122 (2) (2006) 351-360. Zbl1089.76012
- [4] R. Bhattacharya, L. Chen, S. Dobson, R. Guenther, Ch. Orum, M. Ossiander, E. Thomann, E. Waymire, Majorizing kernels and stochastic cascades with applications to incompressible Navier–Stokes equations, Trans. Amer. Math. Soc.355 (2003) 5003-5040. Zbl1031.35115
- [5] M. Bjørhus, A.M. Stuart, Waveform relaxation as a dynamical system, Math. Comput.66 (219) (1997) 1101-1117. Zbl0870.65061MR1415796
- [6] L. Chen, S. Dobson, R. Guenther, Ch. Orum, M. Ossiander, E. Thomann, E. Waymire, On Itô's complex measure condition, in: Probability, Statistics and their Applications: Papers in Honor of Rabi Bhattacharya, IMS Lecture Notes, vol. 41, 2003, pp. 65-80. Zbl1046.60056MR1999415
- [7] D. Blömker, C. Gugg, M. Raible, Thin-film-growth models: Roughness and correlation functions, Eur. J. Appl. Math.13 (4) (2002) 385-402. Zbl1020.82014MR1925258
- [8] T.E. Harris, The Theory of Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, Band 119, Springer-Verlag, Berlin, 1963. Zbl0117.13002MR163361
- [9] N. Ikeda, M. Nagasawa, S. Watanabe, Branching Markov processes. I, J. Math. Kyoto Univ.8 (1968) 233-278. Zbl0233.60068MR232439
- [10] Y. Le Jan, A.S. Sznitman, Stochastic cascades and 3-dimensional Navier–Stokes equations, Probab. Theory Related Fields109 (3) (1997) 343-366. Zbl0888.60072
- [11] Y. Le Jan, A.S. Sznitman, Cascades aléatoires et équations de Navier–Stokes, C. R. Acad. Sci. Paris Sér. I Math.324 (7) (1997) 823-826. Zbl0876.35083
- [12] J.A. López-Mimbela, A. Wakolbinger, Length of Galton–Watson trees and blow-up of semilinear systems, J. Appl. Probab.35 (4) (1998) 802-811. Zbl0933.60085
- [13] H.P. McKean, Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov, Comm. Pure Appl. Math.28 (3) (1975) 323-331. Zbl0316.35053
- [14] S. Montgomery-Smith, Finite time blow-up for a Navier–Stokes like equation, Proc. Amer. Math. Soc.129 (10) (2001) 3025-3029. Zbl0970.35100
- [15] F. Morandin, A resummed branching process representation for a class of nonlinear ODEs, Electron. Comm. Probab.10 (2005) 1-6. Zbl1060.60085MR2119148
- [16] M. Ossiander, A probabilistic representation of the incompressible Navier–Stokes equation in , Probab. Theory Relat. Fields133 (2) (2005) 267-298. Zbl1077.35107
- [17] M. Raible, S.G. Mayr, S.J. Linz, M. Moske, P. Hänggi, K. Samwer, Amorphous thin film growth: Theory compared with experiment, Europhys. Lett.50 (2000) 61-67.
- [18] A.V. Skorokhod, Branching diffusion processes, Theor. Probab. Appl.9 (1964) 445-449. Zbl0264.60058
- [19] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. Zbl0662.35001MR953967
- [20] R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. Zbl0522.35002
- [21] E. Waymire, Probability and incompressible Navier–Stokes equations: An overview of some recent developments, Probab. Surveys2 (2005) 1-32. Zbl1189.76424
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.