Heat flow, brownian motion and newtonian capacity
Annales de l'I.H.P. Probabilités et statistiques (2007)
- Volume: 43, Issue: 2, page 193-214
- ISSN: 0246-0203
Access Full Article
topHow to cite
topVan den Berg, M.. "Heat flow, brownian motion and newtonian capacity." Annales de l'I.H.P. Probabilités et statistiques 43.2 (2007): 193-214. <http://eudml.org/doc/77931>.
@article{VandenBerg2007,
author = {Van den Berg, M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {heat flow; Brownian motion; Newtonian capacity; weak solution; compact non-polar set},
language = {eng},
number = {2},
pages = {193-214},
publisher = {Elsevier},
title = {Heat flow, brownian motion and newtonian capacity},
url = {http://eudml.org/doc/77931},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Van den Berg, M.
TI - Heat flow, brownian motion and newtonian capacity
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 2
SP - 193
EP - 214
LA - eng
KW - heat flow; Brownian motion; Newtonian capacity; weak solution; compact non-polar set
UR - http://eudml.org/doc/77931
ER -
References
top- [1] M. van den Berg, Asymptotics of the heat exchange, J. Funct. Anal.206 (2004) 379-390. Zbl1036.35063MR2021852
- [2] M. van den Berg, On the expected volume of intersection of independent Wiener sausages and the asymptotic behaviour of some related integrals, J. Funct. Anal.222 (2005) 114-128. Zbl1077.60056MR2129767
- [3] M. van den Berg, On the volume of intersection of three independent Wiener sausages, in preparation. Zbl1201.35108
- [4] J.-F. Le Gall, Sur une conjecture de M. Kac, Probab. Theory Relat. Fields78 (1988) 389-402. Zbl0655.60067MR949180
- [5] J.-F. Le Gall, Wiener sauasage and self-intersection local times, J. Funct. Anal.88 (1990) 299-341. Zbl0697.60081MR1038444
- [6] J.-F. Le Gall, Some properties of planar Brownian motion, in: École d'Été de Probabilités de Saint-Flour XX 1990, Lecture Notes in Mathematics, vol. 1527, Springer, Berlin, 1992, pp. 111-235. Zbl0779.60068MR1229519
- [7] A. Joffe, Sojourn time for stable processes, Thesis, Cornell University, 1959.
- [8] S.C. Port, Hitting times for transient stable processes, Pacific J. Math.21 (1967) 161-165. Zbl0154.18904MR208681
- [9] S.C. Port, Hitting times and potentials for recurrent stable processes, J. Anal. Math.20 (1967) 371-395. Zbl0157.24702MR217877
- [10] S.C. Port, C.J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, New York, 1978. Zbl0413.60067MR492329
- [11] S.C. Port, Asymptotic expansions for the expected volume of a stable sausage, Ann. Probab.18 (1990) 492-523. Zbl0705.60061MR1055417
- [12] F. Spitzer, Electrostatic capacity, heat flow and Brownian motion, Z. Wahrsch. Verw. Geb.3 (1964) 110-121. Zbl0126.33505MR172343
- [13] A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer-Verlag, Berlin, 1998. Zbl0973.60003MR1717054
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.