Some results concerning maximum Rényi entropy distributions
Oliver Johnson; Christophe Vignat
Annales de l'I.H.P. Probabilités et statistiques (2007)
- Volume: 43, Issue: 3, page 339-351
- ISSN: 0246-0203
Access Full Article
topHow to cite
topJohnson, Oliver, and Vignat, Christophe. "Some results concerning maximum Rényi entropy distributions." Annales de l'I.H.P. Probabilités et statistiques 43.3 (2007): 339-351. <http://eudml.org/doc/77937>.
@article{Johnson2007,
author = {Johnson, Oliver, Vignat, Christophe},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {entropy power inequality; Fisher information; heat equation; maximum entropy; Rényi entropy},
language = {eng},
number = {3},
pages = {339-351},
publisher = {Elsevier},
title = {Some results concerning maximum Rényi entropy distributions},
url = {http://eudml.org/doc/77937},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Johnson, Oliver
AU - Vignat, Christophe
TI - Some results concerning maximum Rényi entropy distributions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 3
SP - 339
EP - 351
LA - eng
KW - entropy power inequality; Fisher information; heat equation; maximum entropy; Rényi entropy
UR - http://eudml.org/doc/77937
ER -
References
top- [1] S.M. Ali, S.D. Silvey, A general class of coefficients of divergence of one distribution from another, J. Roy. Statist. Soc. Ser. B28 (1966) 131-142. Zbl0203.19902MR196777
- [2] F. Barthe, M. Csörnyei, A. Naor, A note on simultaneous polar and Cartesian decomposition, in: Geometric Aspects of Functional Analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 1-19. Zbl1036.52004MR2083383
- [3] N.M. Blachman, The convolution inequality for entropy powers, IEEE Trans. Inform. Theory11 (1965) 267-271. Zbl0134.37401MR188004
- [4] A. Compte, D. Jou, Non-equilibrium thermodynamics and anomalous diffusion, J. Phys. A29 (15) (1996) 4321-4329. Zbl0900.82066MR1413205
- [5] J. Costa, A. Hero, C. Vignat, On solutions to multivariate maximum α-entropy problems, in: Rangarajan A., Figueiredo M., Zerubia J. (Eds.), EMMCVPR 2003, Lisbon, 7–9 July 2003, Lecture Notes in Computer Science, vol. 2683, Springer-Verlag, Berlin, 2003, pp. 211-228.
- [6] T.M. Cover, J.A. Thomas, Elements of Information Theory, John Wiley, New York, 1991. Zbl0762.94001MR1122806
- [7] I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar.2 (1967) 299-318. Zbl0157.25802MR219345
- [8] A. Dembo, T.M. Cover, J.A. Thomas, Information theoretic inequalities, IEEE Trans. Inform. Theory37 (6) (1991) 1501-1518. Zbl0741.94001MR1134291
- [9] C.W. Dunnett, M. Sobel, A bivariate generalization of Student's t-distribution, with tables for certain special cases, Biometrika41 (1954) 153-169. Zbl0056.36703MR61793
- [10] M.L. Eaton, On the projections of isotropic distributions, Ann. Statist.9 (2) (1981) 391-400. Zbl0463.62016MR606622
- [11] R.A. Fisher, Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population, Biometrika10 (1915) 507-521.
- [12] B.V. Gnedenko, V.Y. Korolev, Random Summation: Limit Theorems and Applications, CRC Press, Boca Raton, FL, 1996. Zbl0857.60002MR1387113
- [13] O.T. Johnson, Y.M. Suhov, Entropy and random vectors, J. Statist. Phys.104 (1) (2001) 147-167. Zbl0987.60034MR1851387
- [14] S. Kullback, R. Leibler, On information and sufficiency, Ann. Math. Statist.22 (1951) 79-86. Zbl0042.38403MR39968
- [15] E. Lutwak, D. Yang, G. Zhang, Moment-entropy inequalities, Ann. Probab.32 (1B) (2004) 757-774. Zbl1053.60004MR2039942
- [16] E. Lutwak, D. Yang, G. Zhang, Cramer–Rao and moment-entropy inequalities for Rényi entropy and generalized Fisher information, IEEE Trans. Inform. Theory51 (2005) 473-478. Zbl1205.94059
- [17] A. Rényi, On measures of entropy and information, in: Neyman J. (Ed.), Proceedings of the 4th Berkeley Conference on Mathematical Statistics and Probability, University of California Press, Berkeley, 1961, pp. 547-561. Zbl0106.33001MR132570
- [18] C.E. Shannon, W.W. Weaver, A Mathematical Theory of Communication, University of Illinois Press, Urbana, IL, 1949. Zbl0041.25804MR32134
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.