Mixing rank-one actions of locally compact abelian groups

Alexandre I. Danilenko; Cesar E. Silva

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 4, page 375-398
  • ISSN: 0246-0203

How to cite

top

Danilenko, Alexandre I., and Silva, Cesar E.. "Mixing rank-one actions of locally compact abelian groups." Annales de l'I.H.P. Probabilités et statistiques 43.4 (2007): 375-398. <http://eudml.org/doc/77939>.

@article{Danilenko2007,
author = {Danilenko, Alexandre I., Silva, Cesar E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {ergodic action; mixing; rank-one action; entropy},
language = {eng},
number = {4},
pages = {375-398},
publisher = {Elsevier},
title = {Mixing rank-one actions of locally compact abelian groups},
url = {http://eudml.org/doc/77939},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Danilenko, Alexandre I.
AU - Silva, Cesar E.
TI - Mixing rank-one actions of locally compact abelian groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 4
SP - 375
EP - 398
LA - eng
KW - ergodic action; mixing; rank-one action; entropy
UR - http://eudml.org/doc/77939
ER -

References

top
  1. [1] T.M. Adams, Smorodinsky's conjecture on rank one systems, Proc. Amer. Math. Soc.126 (1998) 739-744. Zbl0906.28006MR1443143
  2. [2] T.M. Adams, N.A. Friedman, Staircase mixing, preprint, 1992. 
  3. [3] T. Adams, C.E. Silva, Z d -staircase actions, Ergodic Theory Dynam. Systems19 (1999) 837-850. Zbl0939.28013MR1709423
  4. [4] V. Bergelson, Ergodic Ramsey theory—an update, in: Ergodic Theory of Z d Actions, Warwick, 1993–1994, London Math. Soc. Lecture Note Ser., vol. 228, Cambridge Univ. Press, Cambridge, 1996, pp. 1-61. Zbl0846.05095
  5. [5] D. Creutz, C.E. Silva, Mixing on a class of rank-one transformations, Ergodic Theory Dynam. Systems24 (2004) 407-440. Zbl1066.37003MR2054050
  6. [6] A.I. Danilenko, Funny rank one weak mixing for nonsingular Abelian actions, Israel J. Math.121 (2001) 29-54. Zbl1024.28014MR1818379
  7. [7] A.I. Danilenko, Infinite rank one actions and nonsingular Chacon transformations, Illinois J. Math.48 (2004) 769-786. Zbl1069.37003MR2114251
  8. [8] A.I. Danilenko, Mixing rank-one actions for infinite sums of finite groups, Israel J. Math.156 (2006) 341-358. Zbl1131.37006MR2282382
  9. [9] A.I. Danilenko, C.E. Silva, Multiple and polynomial recurrence for Abelian actions in infinite measure, J. London Math. Soc. (2)69 (2004) 183-200. Zbl1061.37003MR2025335
  10. [10] A. del Junco, A simple map with no prime factors, Israel J. Math.104 (1998) 301-320. Zbl0915.28011MR1622315
  11. [11] A. del Junco, R. Yassawi, Multiple mixing rank one group actions, Canad. J. Math.52 (2000) 332-347. Zbl0957.28008MR1755781
  12. [12] B. Fayad, Rank one and mixing differentiable flows, Invent. Math.160 (2005) 305-340. Zbl1064.37006MR2138069
  13. [13] C. Hoffman, A loosely Bernoulli counterexample machine, Israel J. Math.112 (1999) 237-247. Zbl0943.37003MR1714994
  14. [14] S.A. Kalikow, Twofold mixing implies threefold mixing for rank one transformations, Ergodic Theory Dynam. Systems4 (1984) 237-259. Zbl0552.28016MR766104
  15. [15] J.L. King, Joining-rank and the structure of finite rank mixing transformations, J. Analyse Math.51 (1988) 182-227. Zbl0665.28010MR963154
  16. [16] A. Leibman, Polynomial mappings of groups, Israel J. Math.129 (2002) 29-60. Zbl1007.20035MR1910931
  17. [17] B. Madore, Rank-one group actions with simple mixing Z -subactions, New York J. Math.10 (2004) 175-194. Zbl1074.37003MR2114785
  18. [18] D.S. Ornstein, On the root problem in ergodic theory, in: Proc. Sixth Berkeley Symp. Math. Stat. Prob. vol. II, Univ. California, Berkeley, CA, 1970/1971, Univ. of California Press, Berkeley, CA, 1972, pp. 347-356. Zbl0262.28009MR399415
  19. [19] A. Prikhodko, Stochastic constructions of flows of rank one, Mat. Sb.192 (2001) 61-92. Zbl1017.37002MR1885913
  20. [20] D.J. Rudolph, The second centralizer of a Bernoulli shift is just its powers, Israel J. Math.29 (1978) 167-178. Zbl0375.28006MR485401
  21. [21] D.J. Rudolph, An example of a measure preserving map with minimal self-joinings, J. Analyse Math.35 (1979) 97-122. Zbl0446.28018MR555301
  22. [22] V.V. Ryzhikov, Mixing, rank and minimal self-joining of actions with invariant measure, Mat. Sb.183 (1992) 133-160. Zbl0768.28008MR1180921
  23. [23] V.V. Ryzhikov, Joinings and multiple mixing of the actions of finite rank, Funktsional. Anal. i Prilozhen.27 (1993) 63-78. Zbl0853.28011MR1251168
  24. [24] V.V. Ryzhikov, The Rokhlin problem on multiple mixing in the class of actions of positive local rank, Funktsional. Anal. i Prilozhen.34 (2000) 90-93. Zbl0957.28009MR1756740

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.