Self-intersection local time of -superprocess
Annales de l'I.H.P. Probabilités et statistiques (2007)
- Volume: 43, Issue: 4, page 481-507
- ISSN: 0246-0203
Access Full Article
topHow to cite
topMytnik, L., and Villa, J.. "Self-intersection local time of $(\alpha ,d,\beta )$-superprocess." Annales de l'I.H.P. Probabilités et statistiques 43.4 (2007): 481-507. <http://eudml.org/doc/77944>.
@article{Mytnik2007,
author = {Mytnik, L., Villa, J.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {self-intersection local time; infinite variance superprocess; Tanaka-like formula},
language = {eng},
number = {4},
pages = {481-507},
publisher = {Elsevier},
title = {Self-intersection local time of $(\alpha ,d,\beta )$-superprocess},
url = {http://eudml.org/doc/77944},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Mytnik, L.
AU - Villa, J.
TI - Self-intersection local time of $(\alpha ,d,\beta )$-superprocess
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 4
SP - 481
EP - 507
LA - eng
KW - self-intersection local time; infinite variance superprocess; Tanaka-like formula
UR - http://eudml.org/doc/77944
ER -
References
top- [1] R.J. Adler, Superprocess local and intersection local times and their corresponding particle pictures, in: Seminar on Stochastic Processes, 1992, Birkhäuser, 1993, pp. 1-42. Zbl0786.60103MR1278075
- [2] R.J. Adler, M. Lewin, An evolution equation for the intersection local times of superprocesses, in: Barlow M.T., Bingham N.H. (Eds.), Stochastic Analysis, 1991, pp. 1-22. Zbl0768.60066MR1166405
- [3] R.J. Adler, M. Lewin, Local time and Tanaka formulae for super Brownian motion and super stable processes, Stochastic Process. Appl.41 (1992) 45-67. Zbl0754.60086MR1162718
- [4] D. Dawson, Measure-valued Markov processes, in: École d'Été de Probabilitiés de Saint Flour XXI, Lecture Notes in Math., vol. 1541, Springer, Berlin, 1993, pp. 1-260. Zbl0799.60080MR1242575
- [5] D. Dawson, Infinitely divisible random measure and superprocesses, in: Stochastic Analysis and Related Topics, Birkhäuser, Boston, 1992, pp. 1-130. Zbl0785.60034MR1203373
- [6] E. Dynkin, Representation for functionals of superprocesses by multiples stochastic integrals, with applications to self-intersection local times, Astérisque157–158 (1988) 147-171. Zbl0659.60105
- [7] N. El Karoui, S. Roelly, Propriétés de martingales, explosion et représentation de Lévy–Khintchine d'une classe de processus de branchement à valeurs measures, Stochastic Process. Appl.38 (1991) 239-266. Zbl0743.60081
- [8] K. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing Company and Kodansha Ltd., 1981. Zbl0495.60005MR637061
- [9] I. Iscoe, A weighted occupation time for a class of measure-valued branching processes, Probab. Theory Related Fields71 (1986) 85-116. Zbl0555.60034MR814663
- [10] J.F. Le Gall, Spatial Branching Processes Random Snakes and Partial Differential Equations, Birkhäuser, 1999. Zbl0938.60003MR1714707
- [11] J.F. Le Gall, L. Mytnik, Stochastic integral representation and regularity of the density for the exit measure of super-Brownian motion, Ann. Probab.33 (1) (2005) 194-222. Zbl1097.60033MR2118864
- [12] L. Mytnik, Collision measure and collision local time for -superprocesses, J. Theoret. Probab.11 (3) (1998) 733-763. Zbl0917.60083MR1633395
- [13] L. Mytnik, E. Perkins, Regularity and irregularity of -stable super-Brownian motion, Ann. Probab.31 (3) (2003) 1413-1440. Zbl1042.60030MR1989438
- [14] L. Mytnik, E. Perkins, A. Sturm, On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients, Ann. Probab.34 (5) (2006) 1910-1959. Zbl1108.60057MR2271487
- [15] J. Rosen, Renormalizations and limit theorems for self-intersections of superprocesses, Ann. Probab.20 (3) (1992) 1341-1368. Zbl0760.60024MR1175265
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.