Set estimation under convexity type assumptions
Annales de l'I.H.P. Probabilités et statistiques (2007)
- Volume: 43, Issue: 6, page 763-774
- ISSN: 0246-0203
Access Full Article
topHow to cite
topRodríguez Casal, Alberto. "Set estimation under convexity type assumptions." Annales de l'I.H.P. Probabilités et statistiques 43.6 (2007): 763-774. <http://eudml.org/doc/77955>.
@article{RodríguezCasal2007,
author = {Rodríguez Casal, Alberto},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {convex set; -convex set; Hausdorff distance; statistical image analysis},
language = {eng},
number = {6},
pages = {763-774},
publisher = {Elsevier},
title = {Set estimation under convexity type assumptions},
url = {http://eudml.org/doc/77955},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Rodríguez Casal, Alberto
TI - Set estimation under convexity type assumptions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 6
SP - 763
EP - 774
LA - eng
KW - convex set; -convex set; Hausdorff distance; statistical image analysis
UR - http://eudml.org/doc/77955
ER -
References
top- [1] A. Baíllo, A. Cuevas, On the estimation of a star-shaped set, Adv. Appl. Probab.33 (2001) 1-10. Zbl1003.62030MR1875774
- [2] A. Baíllo, A. Cuevas, A. Justel, Set estimation and nonparametric detection, Canad. J. Statist.28 (2000) 765-782. Zbl1057.62026MR1821433
- [3] V. Bertholet, J.P. Rasson, S. Lissoir, About the automatic detection of training sets for multispectral images classification, in: Rizzi A., Vichi M., Bock H.H. (Eds.), Advances in Data Science and Classification, Springer, Berlin, 1988, pp. 221-226.
- [4] A. Cuevas, M. Febrero, R. Fraiman, Cluster analysis: a further approach based on density estimation, Computational Statistics and Data Analysis36 (2001) 441-459. Zbl1053.62537MR1855727
- [5] A. Cuevas, M. Febrero, R. Fraiman, Estimating the number of clusters, Canad. J. Statist.28 (2000) 367-382. Zbl0981.62054MR1792055
- [6] A. Cuevas, R. Fraiman, A plug-in approach to support estimation, Ann. Statist.25 (1997) 2300-2312. Zbl0897.62034MR1604449
- [7] A. Cuevas, A. Rodríguez-Casal, On boundary estimation, Adv. Appl. Probab.36 (2004) 340-354. Zbl1045.62019MR2058139
- [8] L. Devroye, G.L. Wise, Detection of abnormal behavior via nonparametric estimation of the support, SIAM J. Appl. Math.38 (1980) 480-488. Zbl0479.62028MR579432
- [9] L. Dümbgen, G. Walther, Rates of convergence for random approximations of convex sets, Adv. Appl. Probab.28 (1996) 384-393. Zbl0861.60022MR1387882
- [10] G.A. Edgar, Measure, Topology and Fractal Geometry, Springer-Verlag, 1990. Zbl0727.28003MR1065392
- [11] H. Edelsbrunner, E.P. Mücke, Three dimensional alpha shapes, ACM Trans. Graph.13 (1994) 43-72. Zbl0806.68107
- [12] A.P. Korostelev, A.B. Tsybakov, Minimax Theory of Image Reconstruction, Springer-Verlag, 1993. Zbl0833.62039MR1226450
- [13] D. Marr, Vision, Freeman and Co, 1982.
- [14] M. Rudemo, H. Stryhn, Approximating the distribution of maximum likelihood contour estimators in two-region images, Scand. J. Statist.21 (1994) 41-55. Zbl0804.62044MR1267042
- [15] R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press, 1993. Zbl0798.52001
- [16] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, 1982. Zbl0565.92001MR753649
- [17] A.B. Tsybakov, Optimal aggregation of classifiers in statistical learning, Ann. Statist.1 (2004) 135-166. Zbl1105.62353MR2051002
- [18] G. Walther, Granulometric smoothing, Ann. Statist.25 (1997) 2273-2299. Zbl0919.62026MR1604445
- [19] G. Walther, On a generalization of Blaschke's rolling theorem and the smoothing of surfaces, Math. Methods Appl. Sci.22 (1999) 301-316. Zbl0933.52003MR1671447
- [20] W. Weil, J.A. Wieacker, Stochastic geometry, in: Handbook of Convex Geometry, vol. B, Elsevier, Amsterdam, 1993, pp. 1391-1438. Zbl0788.52002MR1243013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.