The quenched invariance principle for random walks in random environments admitting a bounded cycle representation
Jean-Dominique Deuschel; Holger Kösters
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 3, page 574-591
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topDeuschel, Jean-Dominique, and Kösters, Holger. "The quenched invariance principle for random walks in random environments admitting a bounded cycle representation." Annales de l'I.H.P. Probabilités et statistiques 44.3 (2008): 574-591. <http://eudml.org/doc/77983>.
@article{Deuschel2008,
abstract = {We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields129 (2004) 219–244) to the non-reversible setting.},
author = {Deuschel, Jean-Dominique, Kösters, Holger},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {invariance principle; random walks in random environments; non-reversible Markov chains; cycle representations},
language = {eng},
number = {3},
pages = {574-591},
publisher = {Gauthier-Villars},
title = {The quenched invariance principle for random walks in random environments admitting a bounded cycle representation},
url = {http://eudml.org/doc/77983},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Deuschel, Jean-Dominique
AU - Kösters, Holger
TI - The quenched invariance principle for random walks in random environments admitting a bounded cycle representation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 3
SP - 574
EP - 591
AB - We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields129 (2004) 219–244) to the non-reversible setting.
LA - eng
KW - invariance principle; random walks in random environments; non-reversible Markov chains; cycle representations
UR - http://eudml.org/doc/77983
ER -
References
top- [1] N. Berger and M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007) 83–120. Zbl1107.60066MR2278453
- [2] M. Biskup and T. M. Prescott. Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12 (2007) 1323–1348. Zbl1127.60093MR2354160
- [3] E. Bolthausen and A.-S. Sznitman. Ten Lectures on Random Media. Birkhäuser, Basel, 2002. Zbl1075.60128MR1890289
- [4] E. A. Carlen, S. Kusuoka and D. W. Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 245–287. Zbl0634.60066MR898496
- [5] P. Diaconis and L. Saloff-Coste. Nash inequalities for finite Markov chains. J. Theoret. Probab. 9 (1996) 459–510. Zbl0870.60064MR1385408
- [6] C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104 (1986) 1–19. Zbl0588.60058MR834478
- [7] T. Komorowski and S. Olla. A note on the central limit theorem for two-fold stochastic random walks in a random environment. Bull. Polish Acad. Sci. Math. 51 (2003) 217–232. Zbl1057.60098MR1990811
- [8] S. M. Kozlov. The method of averaging and walks in inhomogeneous environments. Russian Math. Surveys 40 (1985) 73–145. Zbl0615.60063MR786087
- [9] T. Komorowski, C. Landim and S. Olla. Fluctuations in Markov Processes. Book in progress. Available at http://w3.impa.br/~landim/notas.html. Zbl06028501
- [10] C. Landim, S. Olla and S. R. S. Varadhan. Asymptotic behavior of a tagged particle in simple exclusion processes. Bol. Soc. Bras. Mat. 31 (2000) 241–275. Zbl0983.60100MR1817088
- [11] P. Mathieu. Carne–Varopoulos bounds for centered random walks. Ann. Probab. 34 (2006) 987–1011. Zbl1099.60049MR2243876
- [12] P. Mathieu. Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130 (2008) 1025–1046. Zbl1214.82044MR2384074
- [13] P. Mathieu and A. Piatnitski. Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007) 2287–2307. Zbl1131.82012MR2345229
- [14] V. Sidoravicius and A.-S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219–244. Zbl1070.60090MR2063376
- [15] S. R. S. Varadhan. Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walks with simple exclusion. Ann. Inst. H. Poincaré 31 (1995) 273–285. Zbl0816.60093MR1340041
- [16] W. Woess. Random Walks on Infinite Graphs and Groups. Cambridge Univ. Press, 2000. Zbl0951.60002MR1743100
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.